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(57) ABSTRACT

Systems and methods for computer modeling in medicine. A
sort of period table of medical models is described for
personalized diagnostics, prognostics and therapeutics,
including at least 80 major categories of medical models.
Generative artificial intelligence and geometric deep learn-
ing techniques, and algorithms including 2D and 3D graph
machine learning and GenAl algorithms, are described,
tailored and applied to diagnostic disease description, prog-
nostic prediction and therapeutic development and manage-
ment, including generation of novel synthetic drugs. The Al
and machine learning techniques and algorithms are applied
to understand each individual’s genetic, RNA and protein
anomalies that represent the source of many unique patient
diseases. Al-enabled software agents assist physicians and
researchers in building patient medical models. Several
personalized medicine applications of individualized medi-
cal modeling include cardiovascular disease, cancer, neuro-
logical disorders, immune system disorders and genetic
diseases.

After an IMM identifies a unique
gene, RNA and or protein /1
dysfunction as a source of
disease, the IMM accesses bio
databases to obtain a reference
for optimum molecular health for
comparison of patient disease
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After a drug is applied to a

1730 1 applied to a pafient, the IMM
| identifies biomarkers to track the|
therapeutic prognosis
1725 The IMM applies in Sifico

experiments to identify a unique
drug solution

Once the IMM identifies optimal 1710
existing drug options to solve a Ya
patient disease, the IMM ranks
the drug options and selects an

optimal drug therapy
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The IMM applies Al fechniques
to identify novel drug solutions

I a drug candidate is applied
and unsuccessful, the IMM
generates a novel synthetic drug
solution
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Artificial Intelligence Categories Applied to
Biomedical Modeling Technologies

US 2025/0322963 A1

Al Category

Biomedical Modeling Technologies Applications

Generative Al

Generative Adversarial Networks {GANs]

Design novel molecules; configure novel protein
and peptide designs

o

Restricted Boltzmann Machines [RBM}
and Conditional Restricted Boltzmann
Machines {CRBM]}

Forecast drug-disease relations; predict drug-target
interactions; identify repositioning tasks in drug-
disease relation networks

Variational Autoencoders [VAEs]

Generate chemical compound search space to show
compound library diversity; identify gene expression
stimulated by a chemical compound; predict cell
states from attributes of compounds

Natural Language Processing [NLP]

Analysis of “translational” language of amino acids
sequences and relations; de novo drug compound
design that is target specific; forecast and classify
drug-target interactions; identify chemical “cell line”
interactions

Large Language Models [L1.Ms]

Identify relations between genes, targets and
diseases; summarize and analyze medical and
biology research articles

Diffusion Models

Generate protein structure patterns from gene, RNA
or amino acid sequence data; identify and predict
potential protein-protein interactions from gene,
RNA or amino acid sequence data

Generative Pre-trained Transformer [GPT]

Protein structure prediction; designing proteins with
targeted properties; GPTs applied to pretrained
protein sequence language models

i

Geometric Deep Learning

Geometric Deep Learning [GDL]

Analysis and prediction of protein stractures;
functional analysis and prediction of molecular
behaviors such as protein interactions;
representation and analysis of cell anatomy and
physiology

Graph Neural Networks [GNNs]

Analyze protein structure as graph-structured data,
inctuding molecular graphs; nodes on graph pass
messages to neighboring nodes; extract features
from graph to predict protein geometry

Graph Attention Networks [GATS]

Attention mechanisms to weigh value of different
nodes or edges in the graph; weight value of graph
nodes; extract features from graph to predict protein
geometry

Graph Convolutional Neural Networks
[GCNs]

Analyze and predict protein properties; molecule
entity is represented as a graph, with atoms at nodes
and with chemical bonds at edges; combination of
information from neighboring nodes on a graph;

FIG. 2A
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mapping and prediction of graph structured protein
data
5 | Manifold-Valued Neural Networks Analysis of non-Euclidean 3D data structure
[MVNs] representations; analysis of stractural protein
features
6 | Spherical Convolutional Neural Networks | Analysis of global representations of protein binding
{SCNs] sites; differentiates chemical properties of protein
binding sites; protein models represented as
molecular graphs
7 | Graphical Autoencoders [GAEs] Analyze and predict protein propertics
& | Equivariant Graph of Graphs Neural Prediction of protein-molecule binding, including
Networks [EGGNets] small molecules, synthetic peptides and proteins;
analysis and prediction of drug-target interaction
networks; graph of graphs (network of networks)
refers to graph wherein some nodes are graphs
11 | Generative Geometric Deep Learning
1 | Generative Graph Neural Networks Generate novel molecules to accelerate drug design;
[Generative GGNNs] process graph structured data to predict drug-target
mteractions; identity and forecast drug-drug
interaction events
2 | Generative Convolutional NNs {GCNNs] | Protein structure prediction; protein-protein
mteraction prediction; protein-ligand interaction
prediction; drug design of novel proteins
1V | 3D Geometric Deep Learning
1| 3D Geometric Deep Learning [3D-GDL] | 3D molecular modeling, analysis and prediction;
analysis of functional protein models with 4D model
simulations; 4D functional analysis of protein-~
protein interactions; prediction of 4D molecular
behaviors; analysis and prediction of 3D cell
anatomy models and 4D cell physiology model
simulations
2 | 3D Graph Neural Networks [3D-GNNs] 3D graph configured to analyze protein data; nodes
on 3D graphs pass message to neighboring nodes on
X, Y and Z axes; extract features from 3D graph to
predict 3D protein, peptide and ligand geometry
3 | 3D Graph Attention Networks [3D-GATs] | Weighted values of nodes and edges in 3D graphs
represent 3D protein structural attrnibutes; extract
features from 3D graph to predict 3D protein
geometry
4 | 3D Graph Convolutional Neural Networks | 3D molecular entities, such as proteins, peptides,
[3D-GCNs} ligands and hipids represented as a 3D graph with X,
Y and 7 axes; 3D graph structured data on protein
combinatorial attributes
5 | 3D Manifold-Valued Neural Networks 3D graph representations and predictions of non-
[3D-MVNs} Euclidean 3D protein, peptide and ligand entities
and molecular attributes
6 | 3D Spherical Convolutional Neural 3D analysis and prediction of protein and peptide
Networks [3D-SCNs] binding sites; differentiates structural properties of
protein and peptide binding sites
7 13D Graphical Autoencoders [3D-GAEs] Analysis and prediction of 3D protein propertics

FIG. 2B
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Equivariant 3D Graph of Graphs Neural
Networks [3D-EGGNets]

Prediction of protein~molecule binding, including
small molecules, synthetic peptides and proteins in
3D models and 4D model simulations; analysis and
prediction of drug-target interaction networks in 4D
model simulations; graph of graphs (network of
networks) refers to multi-dimensional graph wherein
some nodes are 3D graphs

‘7

Generative 3D Geometric Deep
Learning

Generative 3D Graph Neural Networks
[3D-GGNNs]

Process 3D graph structured data to predict drug-
target interactions in 4D model simulations; identify
and forecast drug-drug interaction events in 4D
model simulations; identification and prediction of
drug binding to protein-ligand sites in 3D and 4D
models; prediction of protein-molecule interactions
in 4D model simulations; generate novel synthetic
3D proteins with particular atiributes

Generative 3D Convolutional Neural
Networks [3D-GCNNs}

3D protein structure prediction; design of novel
synthetic 3D proteins with well-defined properties;
functional protein-protein interaction prediction 1n
4D model simulations; functional protein-ligand
interaction prediction in 4D model simulations; 4D
model simulations of cell physiology processes; 4D
model simulations of cell networks

Generative 3D Graph Attention Networks
[3D-GGATs]

Weighted values of nodes and edges i 3D graphs
predict 3D protein attributes; extract features from
3D graph to predict 3D protein geometry in 4D
model simulations; 4D model simulations of cell
networks; generate novel synthetic 3D proteins with
identifiable characteristics

Generative 3D Manifold Valued Neural
Networks [3D-GMVNs]

3D graph representations of non-Euclidean 3D
protein structures and attributes; 4D model
simulations of non-Euclidean protein-protein and
protein-figand interactions; generate novel synthetic
3D proteins with unique features

FIG. 2C
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RNA Typology
Abbr. Type Function Description
I Post-Transcriptional PTM RNAs regulate how
Modification RNAs and when a primary RNA
transcript is converted into
mature RNA; RNA is
transformed after
transcription from a gene
to a functional RNA to
perform cellular activities
1 | snRNA Small nuclear RNA Splicing and other
functions; processing and
sphoing of mRNA in the
nuclear spliceosome
2 | snoRNA | Small nucleolar RNA Nucleotide modification of
RNAs; involved in
methylation of rRNA and
tRNA
3 | gRNA Guide RNA mRNA nucleotide
modification
4 | RNase Riboruclease P Riboenzyme (made of Family of RNase includes
RNA) that cleaves RNA 12 subtypes
I Protein Synthesis RNAs Protein synthesis RNAs
perform translation of
nucleotide sequences from
DNA to amino acids to
encode proteins
{polypeptide chains)
{ | mRNA Messenger RNA Single-stranded RNA that | Protein coding RNA
codes for protein; synonyn; application as a
transcription of biomarker; application as a
information in DNA exons | therapeutic
{protein recipe); subject to
alternative splicing;
template for protein
synthesis
2 | tRNA Ribosomal RNA Main component of 80% of RNA in cells
ribosomes, site of mMRNA
translation to protein
3 [ tRNA Transfer RNA Carries an amino acid Soluble RNA synonym;
matching the mRNA to the | about 80 bp length
ribosome, necessary for
translation; tRNA match
amino acids to codons in
mRNA

FIG. 3A
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11 Regulatory RNAs Regulatory RNAs are the
“sculptors of gene
expression” that precisely
configure, or block,
transcription (from DNA
to RNA) and protein
encoding

1 | aRNA, Antisense RNA mRNA degradation and
asRNA stabilization; single
stranded RNA
complementary to a
mRNA to which it binds
and inhibits

2 | ncRNA Non coding RNA Role in epigenetic Synonym for non-

modifications, regulating | messenger RNA and small

gene expression; useful in | RNA; small ncRNAs as

cell growth and 15-31 bp length; medivm

differentiation ncRNAs as 20-200 bp
length; IncRNA as 200+
bp length; application as a
biomarker

3 | IncRNA | Long noncoding RNA Gene transcription 200+ bp length;

regulation and epigenetic | application as a biomarker

regulation

4 | miRNA MicroRNA Single stranded RNA, 22 base pairs length

interferes with other RNAs
5 {siRNA Small interfering RNA Double stranded RNA, 20-25 bp length;
mterferes with other RNAs | application as a
therapeutic
6 | citcRNA | Circular RNA Properties include protein | circRNAs have coding and
coding and gene regulation | noncoding properties; may
act as “sponges” for
miRNA; application as a
biomarker
6 | shRNA Short hairpin RNA Artificial RNA molecule
configured to inhibit other
RNAs

7 | eRNA Enhancer RNA Gene regulation

8 | mtRNA Mitochondrial RNA Family of RNAs in Total of 13 mitochondrial
mitochondria, including proteins
mt-rRNA, mt-tRNA, mt-
{ncRNA and mt-ncRNA

9 | ctRNA CRISPR RNA Small RNA component of | Applied in CRISPR-Cas9
CRISPR-Cas adaptive genome editing
mmune system

[0 | sgRNA Single-guide RNA Programmable RNA Identifies or gnides precise
includes a complementary | location for DNA editing
sequence to target DNA in CRISPR-Cas9 system

FIG. 3B
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Disease Type

Biomarkers

Description

Cardiovascular Disease

Coronary Artery Disease
(H

miR-29, miR-100, miR-155,
miR-199, miR-221, miR-199,
miR-221, miR-363, miR-467,
miR-508

Upregulation

miR-1273, miR-490, miR-24,
miR-1284

Downregulation

Peripheral Artery Disecase
(1

miR-21, miR-34, miR-146,
miR-210, miR-13*, miR-26%,
muR-30%, miR-98*, miR-125%,
miR~-152* muR-181, nuR-
100*, miR-127* {carotid
plaques)

Upregulation

miR-520%, miR-105* (carotid
plaques)

Downreguiation

Hypertension (2)

miR-145-5p, miR-1-3p, and
miR-423-5p and high levels of
PCSK9, MyBPC3, and DNase
i

Upregulation

NOX1 and CYBb

Downregulation

Neurodegenerative and
Psychiatric Diseases

Alzheimer’s Disease (3)

miR-502-3p, miR-206, miR-
132, miR-34c, miR-181¢,
miR-411

Upregulation

miR-125b, miR-181¢c, miR-
26b, miR-31, miR-146a, miR-
28¢-3, miR-19b-3p, miR-191-
5p, miR-193bg, miR-34a-5p,
miR-15b-5p, miR-23a, miR-
26b, miR-26a, miR-36b-5p,
miR-222, miR-103

Downregulation

TL-1b, sIL-IR1, sIL-1R3, IL-S,
YKL-40, VCAM-1, ICAM-1
1133, sST2, CCL2, CXCL 12

Inflammation

CSF AB1-42, CSF P-Tau, CSF

T-Tau, Neurogranin

CSF biomarkers

AB40, AB42, P-Tau, T-Tau

AD pathogenic proteins

Neurogranin, NFL

Neurodegeneration

FIG. 4A

US 2025/0322963 A1




Patent Application Publication

Oct. 16,2025 Sheet 10 of 110 US 2025/0322963 A1

4 Parkinson’s disease (4)

Granulin precursor, Mannan-
binding-lectin-serine-
peptidase-2, Endoplasmatic-
reticulam-chaperone-BiP,
Prostaglaindin-H2-D-
isomaerase, Interceuliular-
adhesion-molecule-1,
Complement C3, Dickkopf-
WNT-signalling pathway-
inhibitor-3, and Plasma-
protease~-Cl-inhibitor

Objective biomarkers in ML
model accurately predict
Parkinson’s motor disorder up to
seven years before disease onset

5 Schizophrenia (5)

IL-6, IL-8, CRP, IFN-y, IL-1B,
IL-1RA, IL-4, TL10, TL-12,
SIL-2R, TGF-B, TNF-a, HVA,
MHPG, KYNA, Gly, Gln,
PUFAs, BDNF, GWAS, DNV,
PRS

Vartous diagnostic {evels of
biomarkers indicate therapeutic
preferences for treatment of
schizophrenia

Cancer

6 Breast Cancer (6)

miR-29a, miR-146a, miR-373,
miR 389, miR-221/222 cluster,
miR-9, miR10b, miR-96, niR-
181, miR-375, and miR-520c¢.

10iRNA biomarkers overexpress
in breast cancer patients

hsa cire 103110, hsa circ Upregulation

104689, hsa circ 104821

hsa circ 006054, hsa circ Downregulation

100219, hsa circ 406697

GREBI Gene encodes protein involved in
cell proliferation

IncR-963 Long non-coding RNA

overexpressed in triple-negative
breast cancer with poor
prognosis; possible drug target

7 Lung Cancer (7)

miR-21-5p, miR-126-3p, miR-
155-5p, and miR-223-3p

miRNA biomarkers associated
with lung cancer

miR-18a, miR-28-3p, miR-
191, miR-145, and miR-328

miRNA biomarkers associated
with 3-year survival

miR-15v-5p

Overexpressed

miR-19-3p, miR-92-3p, miR-
16-5p, miR-17b-5p, and miR~

Downregulation

20a-5p

SOX17 Dowaregufation; SOX17 encodes
a transcription factor for
regulation of cell growth

IncR-1133 Upregulation; Long non-coding

RNA for regulation of cell growth

FIG 4B
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8 Colorectal Cancer (8)}(9) miRNA-146a, miRNA-128 PVT-1 decreases levels of
miRNA-216a-5p miRNA-455 | miRNA-146a, downregulates
miRNA-214-3p, miRNA-455- | miRNA-216a-5p, negatively
5p, miRNA-30d-5p miRNA- regulates miRNA-455,

26b miRNA-145, miRNA-16- | downregulates miRNA-214-3p,
Sp inhibits miRNA26b,
downregulates miRNA-145 and
binds to miR-16-5p to promote
cell proliferation

CCAT1 Gene encodes IncRNA that
regulates cell growth

S0X2 Gene encodes a transcription
factor for regulation of cell
differentiation

APC, TP53a, SMAD4 Tumor suppressor genes

KRAS, BRAF, PIK3CA Oncogene

MiR-21 Promoting cell proliferation and
inhubiting apoptosis

miR-485-3p, miR-4728-5p Cell proliferation mhibition

miR-3937 Promoting cell invasion

miR-31 Promoting cell proliferation

miR-22-3p Inhibiting proliferation, migration
and nvasion of CRC cells

miR-20a Promoting invasion of CRC cells

miR-145 Cell proliferation inhibition

miR-223, miR-92a Promoting CRC cell proliferation

miR-182 Enhancing CRC cell survival and

drug resistance

9 Pancreatic Cancer (10) miR-122-5p, miR-125b-5p, Biomarkers involved with PC
miR-~192-5p, miR~193b-3p,
miR-221-3p, and miR-27b-3p
miR-25 Overexpression in PC

miR-145, miR-150, miR-223, | Biomarkers identify PC patients
and miR-636, miR-26b, miR-
34a, miR-122, miR-126, miR-
145, miR~150, miR-223, miR-
505, miR-636, and miR-
885.5p

10 | Prostate Cancer (11} miR-21, miR-221, miR~1290, | Overexpression in PC
and miR-375
miR-4289, miR~326, miR-152~ | Upregulation
3p and miR-98-5p

miR-106a, miR-130b and

miR-223
miR-106a/miR-130b and miR~ | Ratios are best predictor of PC
106a/miR-~223 ratios (beyond PSA)

PCA3, SChLAPIL, and PCAT! | Long non-coding RNA as PC
biomarkers for prognosis

FIG. 4C
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11 | Melanoma (12) ABCC3, CAPS2, CCR6, CLU, | High expression of genes
PTK2B, SATB1, and SYNE correlated with prognosis
CDCAS, DPF1 Low expression of genes

correlated with prognosis
PRADC1, RCCIl, FKBP4 mRNAs enhanced expression
correlate with poor prognosis
GBP1 mRNA reduced levels correlate
with poor prognosis
miR-182 Overexpression during
progression from primary to
metastatic melanoma
BANCR Long non-coding RNA, a novel
oncogenic IncRNA, promotes
melanoma proliferation
SLNCR1 Long non-coding RNA involved
in transcriptional activities in
upregulation of MMPY that
promotes melanoma invasion
CASC135 Long non-coding RNA actively
involved in melanoma
proliferation and metastasis
HOTAIR Long non~coding RNA promotes
melanoma migration and
metastasis

12 | Metastatic Cancer (13) Let-7, miR-9, miR-132, miR- | Epithelial to mesenchymal
186~5p, miR-200 family, nuR- | transition
203, miR-215, miR374a
miR-10b, miR-21-5p Migration and Invasion
miR-149-3p, miR-140-5p, MiRNA replacement
miR-195-5p, miR-101-3p,
miR-338-5p, miR-34a
miR-21, miR-210, miR-10b, MiRNA inhibition
miR-155, miR-221, miR-22,
miR-522, miR-9, miR-663a

13 | Cancer Stem Cells and ABCG2, CD133, ALDH, CSC biomarkers

Drug Resistance (14) CD2711, CD20, CD44,
BCMabi, NESTIN, A2BS,
CDI5, MUSASHIL, L1CAM,
GRP78, CD98, CD200
SOX2 averexpression, p38&- Tumor imtiation and growth
regulated NOTCH1,
CD34/CD38, CD133/CD44,
CD44/CD24, elevated ROS
and RNS, Oct3/4, CD44v6,
COX2
Increased HIF-1 expression, Tumor angiogenesis
activation of MAPK,
P13K/AKT, RhoA and
VEGFA, Lymph apgiogenesis

FIG. 4D




Patent Application Publication

Oct. 16,2025 Sheet 13 of 110 US 2025/0322963 A1

by CXCL11, MMPs, CAFs,
TAMs

Snail, Zeb1/2, Twist, KLFS§,
interaction of EMT factors
with miR-148a and miR200,
activation of Notch and
WNT/b-catenin pathway,
TGF-b mediated EMT

Epithehal to mesenchymal
transition

CD133 (pancreatic cancer);
CXCR4, CD26 (colon cancer);
ALDH+, CD44+CD24 (breast
cancer); CD110, CDCP1
(CRC); P120CTN, CD105
(liver and lung cancer)

Tumor metastasis

Elevated ALDH, enhanced
expression of ABC
transporters, High expression
of Bel-2 and Bel-XL, DNA
damage repair by CHK1 and
CHK2, upregulation of IGFR
and HDAC, elevated ROS
signaling

Therapy resistance

Autoimmune Diseases

14

Rheumatoid Arthritis (15)

SLAMF6, MAGE!, CD40L,
FPGS, ADORA3, 1L-38,
HLA-DP, IL-10, NLRP3,
CARDS, TGRS, HDAC,
YTHDEF2Z, SOCSI, ABCG2,
IL-32, TP, TGFBR2, CD26,
HK2

mRNAs associated with RA
mechanisims

miR-5571-3p, miR-135-5p,
miR-143-3p, miR-23b, miR-
539, MiR-125a-5p, miR-146a,
miR-361-5p, miR-~132-3p,
miR-155-5p, miR-5196, miR-
326, miR-195

Micro RNAs associated with RA
mechanisms

Inc-ITSNI-2, GAPLINC,
GASS, Inc-AL928768.3, Inc-
ACO91493.1, RP11-83116.1,
MALATI, NEATI1, LINK-A,
OSERI-ASI, Ine-PCTH,
FOXD2-ASI, GASC2,
HOTAIR, Ine-Cox2,
LINC00305

Long non~coding RNAs
associated with RA mechanisms

5

Systemic Lupus
Erythematosus [Lupus}

(16)

VCAMI, ICAM-{

Predict nephritic flare

MALTT!

Severity and inflammation

IP-10, IL-1a, IL-6, TNF-a and

Joint involvement

~ FIG. 4E
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NAMPT, eNAMPT Lung inflammation

CD163, MCP-1, Serpin-A3, Ig | Biomarkers of active disease
binding protein 1, TWEAK,
suPAR, S100

CXCL4, VCAM-1 Biomarkers
16 | Autoimmune Antibodies to peptides from Diagnostic biomarkers for MS
Neuromuscular Disease myelin proteins PO, P2140s,
(7 PMP22 and connexin 32
Autoantibodies to Autoantibodies as biomarkers for
gangliosides MS for prognostics

(GM1, GAL, GDla, GD1b,
GalNAc-GD1a, 9-O-Acetyl
GD1b, GD3, GM1, GTla,
GT1b, GT3, GQI1b, 0-Acetyl
GT3, LM-1, GD1a/GD1b,
GM1/GalNac-GD1la, GM1/PA,
GM1/GD1la, GM1/GT1b,

LMI/GAT)

IgG and 1gM

Cytokines Biomarkers correlated to
Interferon gamma (IFN v), prognostics of neuromuscular

Tumor necrosis factor o (TNF | disease
a), Transforming growth factor
$1 (TGF g1), IL-1p, IL-4, IL-
6, IL-10, IL-12, IL-16, IL-17,
1L-18, 1L-22, 11.-23, 1L-37

MicroRNAs miRNAs associated with
has-miR471{7-5p (GBS) monitoring neuromuscular
has~-miR-642b-5p (GBS) disease
miR-31-5p (CIDP
Micro-RNAs miRNAs associated with
miR-150-5p diagnostics and prognostics of
miR-21-5p neuromuscular disease
miR-30e-5p
let-7 miRNA family
17 | Inflammatory Bowel miR-19a, miR-21, miR~124, miRNAs associated with Crohn’s
Disease (18) miR-141, miR-150, miR-155, | disease.

miR-193a-3p, miR-206, miR-
21, miR-143, miR-145, miR-
125b, miR-223, miR-138,
miR-7, miR-19b, miR-29b,
miR-122, miR0O141, miR-
200b, miR-590-5p

18 | Type 1 Diabetes (19) miR-375, miR-21, miR-210, miRNAs upregulated in T1D
miR-24, miR-148a, miR-181a-
5p, miR-210-5p

miR-21-5p Biomarker of T1D development

FIG. 4F
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19 | Autoimmune Disease of NtL, GRAP, CNTN-1, CHI3LI | Biomarkers for monitoring
the Central Nervous disease, predicting progression or
System {20} tracking treatment
KFLC, AQP4-1gG, MOD-IgG | Humoral diagnostic or prognostic
biomarkers

11-6, IL-17A, CXCL13, OPN | Cytokine biomarkers for
diagnostics or prognostics

(1) Adam, C., et al., Novel Biomarkers of Atherosclerotic Vascular Disease — Latest Insights
n the Research Field, Int J Mol Sci, 2022.

(2) Charkiewicz, A., et al., The Diagnostic potential of novel biomarkers in hypertension in
men, Arch Med Sci, 2022.

(3) Tkyucherev, T. et al.; Advances in the development of new biomarkers for Alzheimer’s
discase, Translational Neurodegeneration, 2022.

(4) Hallgvist, J., Plasma proteomics identify biomarkers predicting Parkinson’s discase up to
7 years before symptom onset, Nature Communications, 2024.

(5) Yue, W, et al, Potential diagnostic biomarkers for schizophrenia, Journal Med Rev, 2022.

(6) Afzal, S., et al, Breast Cancer: Discovery of Novel Diagnostic Biomarkers, Drug
Resistance, and Therapeutic Implications, Frontiers in Molecular Biosciences, 2022.

(7} Herath, S., et al., The Role of Circulating Biomarkers in Lung Cancer, Frontiers in
Oncology, 2022.

(8) Ogunwobi, O. et al., Biomarkers in Colorectal Cancer: Current Research and Future
Prospects, Int J Mol Sci, 2020.

{9} Zhang, Y et al., Methods and biomarkers for early detection, prediction, and diagnosis of
colorectal cancer, Biomedicine and Pharmacotherapy, 2023,

Y] Bestari, M. e al, A quest for sarvival: A review of the early biomarkers of
Pancreatic Cancer and the Most Effective Approaches at Present, Biomolecules, 2024,

(I Alarcon-Zendeja, A. ot al, The promising role of new molecular biomarkers in
prostate cancer: from coding to non-coding genes to artificial intelligence approaches,

Prostate Cancer and Prostatic Diseases, 2022,

{12} Ding, L. et al., Prognostic biomarkers in Cotaneous Melanoma,
Photodermatology, Photomununology and Photomedicine, 2022,

FIG. 4G



Patent Application Publication  Oct. 16, 2025 Sheet 16 of 110 US 2025/0322963 A1

{13 Sell, M. et al., MicroRNAs in cancer metastasis: biological and therapeutic
implications, Expert Rev Mol Med, 2023.

(14 Natruz, T. et al., Cancer stem cells: an insight into the development of metastatic
tumors and therapy resistance, Stem Cell Rev Rep, 2023,

(1% Jiang, Y. et al., Biomarkers (mRNA and non-coding RNAs) for the diagnosis and
prognosis of rheumatoid arthritis, Frontiers of Immunology, 2023.

{16) Fenton, K., et al., Advanced methods and novel biomarkers 1n autoimmune
diseases — a review of the recent years of progress in system lupus erythematosus,

Frontiers m Medicine, 2023.

(17 Oeztuerk, M. et al,, Current Biomarker Strategies in Autoinunune Neuromuscular
Diseases, Cells, 2023,

{(18) Alghoul, Z et al, The Cuorrent Status of Molecular Biomarkers for Inflammatory
Bowel Disease, Biomedicines, 2022.

{1%) Y1, L. et al, Serum biomarkers for diagnosis and prediction of type 1 diabetes,
Trani Res., 2018,

(20) Zhang, F et al., Biomarkers in autoimmune discases of the central nervous system,
Frontiers in Immunology, 2023,
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Object Type Application of Al techniques to IMMs
2D Objects
Description
i 2D Gene to 2D RNA transcription process 2D GDL; GenAl
2 Description of 3D structures and 4D process of 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
2D objects (gene to RNA transcription) 3D SCNs
3 Genomic analysis [in 3D] 2D GDL; 2D GNNs: 2D GATs; 2D GCNs;
2D SCNs
4 Analysis of mutated gene [in 3D] 2D GDL; 2D GNNs; 2D GATs; 2D GCN;
2D SCNs
S Analysis of abnormal RNA {in 3D} 2D GDL; 2D GNNs; 2D GATs; 2D GCN;
2D SCNs
Prediction
6 Prediction of healthy 2D genes and RNA 2D GDL; GenAl; Diffusion models
7 2D mutated genes to 2D abnormal RNA 2D GDL; GenAl; 2D Gen GDL
dysfunctional transcription process [in 3D] with
limited information
2D RNA to 3D Proteins (and Aniino Acids and
Peptides) [Translation}
Description
8 Molecular biomarker analysis (proteins) 2D GDL; 3D GDL
9 2D abnormal RNA to 3D dysfunctional proteins 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
[drug targets] 3D SCNs
10 | Work backwards from abnormal 3D proteins to 3D GDL; 3D Gen GDL; 3D GNNs; 3D
mutated genes and/or abnormal RNA GATs; 3D GCNs; 3D SCNs
Prediction
11 | 2D aboormal RNA to 3D dysfunctional 3D GDL; 3D GNNs: 3D GATs; 3D GCNg;
(malformed) proteins (with limited information) 3D SCNs; GAEs; GINNs
3D Protein Structure: Healthy and Abnormal
Proteins
Description
12 | 3D protein structure description of healthy protein | 3D GDL; 3D Gen GDL; 3D GNN5s; 3D
GATs; 3D GCNs; 3D SCNs; EGGNets
13 | 3D protein structure description of abnormal 3D GDL; 3D Gen GDL; 3D GNNs; 3D
protein [drug targets] GATs; 3D GCNs; 3D SCNs; EGGNets
14 | 3D protein function description of healthy protein | 3D GDL; 3D Gen GDL; 3D GNNs; 3D
GATs; 3D GCNs; 3D SCNs; 3D EGGNets
15 | 3D protein function description of abnormal 3D GDL; 3D Gen GDL; 3D GNNs; 3D
protein [abnormal protein-protein interactions) GATs; 3D GCNs; 3D SCNs; 3D EGGNets
Prediction
16 | Healthy protein 3D structure development: 3D GDL; Diffusion models; 3D GAEs
prediction in scenarios

FIG. 5A
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17 | Abnormal protein 3D structure development: 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
prediction in scenarios with limited information 3D GAEs; 3D MVNs; 3D SCNs; 3D
EGGNets; 3D GINNs
3D Protein Structure to 4D Function: Healthy
and Abnormal Proteins
Description
18 | 3D to 3D protein process of interaction of healthy | 3D GDL; 3D GNNs; 3D GATs; 3D GCN;
protein [protein, lipid, ligand, small molecules] 3D GAEs; 3D MVNs; 3D SCNs; 3D
EGGNets; 3D GINNs
19 | 3D to 3D protein process of mteraction of 3D GDL; 3D GNNs; 3D GATs; 3D GCNg;
abnormal proteins [protein, lipid, ligan, small 3D GAEs; 3D MVNs; 3D SCNs; 3D
molecules] {abnormal protein-protein interactions | EGGNets; 3D GINNs
and abnormal protein pathways]
20 | 4D protein function description of healthy protein | 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
3D GAEs; 3D MVNs; 3D SCNs; 3D
EGGNets; 3D GINNg
21 | 4D protein function description of abnormal 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
protein [abnormal protein-protein interactions and | 3D GAEs; 3D MVNs; 3D SCNs; 3D
abnormal protein pathways] EGGNets; 3D GINNs
22 | 4D healthy protein functions in healthy cells 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
3D GAEs; 3D MVNs; 3D SCNs; 3D
EGGNets; 3D GINNs
23 | 4D abnormal protein functions in dysfunctional 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
cells [abnormal protein-protein interactions and 3D GAFs; 3D MVNs; 3D SCNs; 3D
abnormal protein pathways] EGGNets; 3D GINNs
Prediction
24 | Healthy protein 41 function development: 3D GDL; 3D GNNs; 3D GATs; 3D GCNs;
prediction of healthy protein function in probable | 3D GAEs; 3D MVNs; 3D SCNs; 3D
SCENArios EGGNets; 3D GINNg
25 | Abnormal protein 4D fimction development: 3D GDL; 3D GNNs; 3D GATs; 3D GCN;
prediction of abnormal protein function in 3D GAEs; 3D MVNs; 3D SCNs; 3D
probable scenarios with limited information EGGNets; 3D GINNs
Generation of Novel RNA and Protein
Structures
26 | Generate RNA code to generate 3D protein 3D GGNNSs; 3D GGATs; 3D GGCNs; 3D
GMVNs; 3D GGoGNNs
27 | Generate novel synthetic 3D protein structure 3D GGNNs; 3D GGATs; 3D GGCNs; 3D
GMVNs; GANs; 3D GGoGNNs
28 | Generate novel synthetic 3D antibodies 3D GGNNs; 3D GGATs; 3D GGCNs; 3D
GMVNs; 3D GGoGNNs
29 | Describe drug-target interactions of novel drug 3D GGNNs; 3D GGATs; 3D GGCNs; 3D
GMVNs; 3D GGoGNNs
Prescription of Custom RNA and Protein
Struetures
30 | Map probable boundaries of novel protein 3D Gen GDL; 3D GGNNs; 3D GGATs; 3D
structiures GGCNs; 3D GMVNs; 3D GGoGNNs

FIG. 5B
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31 | Identify probable attributes of novel protein 3D Gen GDL; 3D GGNNs; 3D GGATs; 3D
structures GGOCNs; 3D GMVNs; 3D GGoGNNs
32 | Map probable synthetic 3D protein functions 3D Gen GDL; 3D GGNNgs; 3D GGATs; 3D

GGCNs; 3D GMVNSs; 3D GGoGNNs
33 | Identify probable protein functional interactions in | 3D Gen GDL; 3D GGNNs; 3D GGATs; 3D
cells and cell networks GGCNs; 3D GMVNs; 3D GGoGNNs

Abbreviations:

EGGNets: Equivariant Graph of Graphs NNs [2D+3D] [Also called GoGNNs}
GenAl: Generative artificial intelhgence

GANs: Generative adversarial networks

GATs: Graph attention networks [+ generative GATs] [2D+3D]

GCNN: Graph convolutional NNs [+ generative GCNNs] [2D+3D]

GDL: Geometric deep learning [2D+3D+4D]

GINNSs: Graph isomorphism NNs {2D+3D]

GNNs: Graph neural networks [+ generative GNN version] {2D+3D]

MVNs: Manifold-valued NNs (non-Euclidean 3D) [+ generative 2D/3D]

VAEs: Variational autoencoders [and GAEs: Graphical AEs (2D+3D}]

3D: Three dimensional; 4D: Four dimensional [3D + time]

3D Gen GDL: Generative 3D geometric deep learning NNs

3D GGATs: Generative 3D graph attention networks

3D GGCNs: Generative 3D graph convolutional neural networks

3D GGNNs: Generative 3D graph neuvral networks

3D GMVNSs: Generative 3D manifold-valued neural networks

3D GGoGNNs: Generative 3D graph of graph neural networks [+ Generative 3D EGGNets]
3D VAEs: 3D variational autoencoders [and 3D GAEs: 3D graphical AEs]
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MEDICAL MODELING ARCHITECTURE,
INTELLIGENCE AND METHODS

FIELD OF THE INVENTION

[0001] The invention pertains to biological, biochemical,
biomedical and medical modeling systems. Individualized
medical modeling are computational duplicates of biomedi-
cal objects that delineate object structures, functions and
interactions. Medical models apply computational chemistry
and computational biology to represent, assess and test
biological molecular and cellular dynamics. In addition to
digital representation of microbiochemical models, medical
models are also applied to organ, tissue, biosystem, body
and population models. Individualized medical modeling is
applied to medical diagnostics, prognostics, pharmacog-
enomics, in silico pharmacology and therapeutics. Medical
modeling are an essential component of drug discovery,
personalized medicine and precision medicine technologies.
[0002] The invention pertains to computer modeling of
biological and biomedical phenomena. The invention
involves analysis of combinatorial biology, combinatorial
chemistry, biomedical anatomy, biomedical physiology and
biophysics. The invention involves medical modeling of
biomolecular and cellular phenomena. The invention applies
artificial intelligence, machine learning and deep learning to
computational biology, digital biology, biomedical systems,
medical diagnostics, medical prognostics and medical thera-
peutics.

BACKGROUND OF THE INVENTION

[0003] Digital twins represent computer modeling of
physical entities. Historically, digital twins originated with
NASA seeking to analyze industrial components in a com-
puter model. This approach to industrial digital twins has
grown to include numerous industrial applications.

[0004] Scientists have developed different categories of
digital twins. These include a “static twin” in which a simple
digital replica of a fixed physical entity or system is repre-
sented. A “mirror twin” or “function twin” is a static twin
with dynamic behaviors, such as a mechanical device that
changes positions. A “shadow twin” or self-adaptive twin is
a functional twin with the ability to track real-time data
updates; this dynamical representation requires data tracking
its evolution over time. An “intelligent twin” is a self-
adaptive twin that includes artificial intelligence and
autonomy; this type of digital twin accounts for two-way
dynamic information exchange of virtual and physical
domains.

[0005] Digital twins have emerged in the biomedical field.
Virtual You (Princeton, 2023), by Coveney and Highfield,
describes academic work in medical digital twins. Most
medical digital twins are generic representations of refer-
ence biological systems. For example, the classic illustration
is the construction of a digital twin of a generic human heart.
In this case, a generalized heart muscle is configured in a
computer model. These generic DTs are useful for baseline
reference, but are not personalized to an individual, much as
the earliest decoding of the human genome involved an
aggregation of numerous individual’s DNA. As such, medi-
cal DTs so far have generally relied on academic use of
supercomputers to construct models of generalized patients.
These generic DTs are not tuned to an individual patient.
That is, these medical digital twins do not represent or model
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a specific patient and their unique medical conditions. These
primarily academic medical DTs focus on specific generic
organ modeling—heart, liver, kidneys and brain—and mod-
eling of body systems, such as the immune system. To the
degree that prior medical DTs deal with patients, they are
restricted to merely automating symptom-based diagnostics
and simple existing drug selection processes.

[0006] Nvidia has developed a generative artificial intel-
ligence (GenAl) platform for drug discovery called BioN-
eMo. This platform applies a pre-trained large language
model (LLM) of biology foundation models, particularly the
BERT biological model. BioNeMo has 3B parameters,
which is fairly small when compared to very large 2T
parameter LLMs. This platform enables biological research-
ers to apply the LLM for drug discovery and development.
In contrast to this specialized biological LLM, much larger
general LLMs such as Open AI’s Chat GPT 4, 40 or 5, have
trillions of parameters. There are scores of specialized
biology LLMs for gene, protein and biological molecules,
typically with 650M-10B parameters. DeepMind 3, intro-
duced in May, 2024, is an example of this specialized LLM,
which is programmed to predict protein structure represen-
tations and interaction data from gene sequence data. How-
ever, all of these biological LLMs generate generic biologi-
cal data. For example, they will generate a specific generic
protein molecule from gene or RNA sequence information.
Biological LLMs can be programmed to identify a protein
target, to generate drug candidates and to screen drug
candidates, thereby accelerating drug discovery. One chal-
lenge of these LLMs is that it takes sometimes over a year
or two to gestate these massive models, thereby making the
information on which they rely inherently obsolete. Also,
these LLMs have a tendency to hallucinate, that is, to
generate false information. While these LL.Ms are a form of
model, they represent relatively limited domains. Further-
more, they represent generic data about idealized healthy
biomedical phenomena. The protein representations that are
generated by bio LLMs focus on perfect optimized versions
that provide a reference to which to compare unhealthy
proteins.

[0007] The 2020s experienced a revolution in modern
medicine that some describe as medicine 4.0. According to
this view, the first generation of modern medicine occurred
with the discovery by Watson and Crick in 1953 of the DNA
double helix molecule. The second generation of modern
medicine occurred in 2000 with the development of the
human genome. The third generation of modern medicine is
represented by the convergence of biology and engineering
for integration of medicine and medical devices. Finally, the
present era, medicine 4.0, is represented by computer mod-
eling, Al and machine learning. However, while medicine
4.0 is a goal, there are still a number of important elements
missing in order to realize the prospect of personalized
medicine that applies advanced Al and modeling technolo-
gies to bioinformatics and individual patient pathologies in
order to develop precision diagnostics and effective drug
therapies. This latest era of the fourth generation of modern
medicine—digital medicine—represents the hope of a truly
personalized medicine in which quality and efficiency are
optimized while costs are minimized. In this sense, most
complex medical problems involve computational analysis
and bioinformatics in order to strive for diagnostic and
therapeutic solutions.
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SUMMARY OF THE INVENTION

Problems that Individualized Medical Modeling
Solves

[0008] There is a set of problems in biomedical modeling
that individualized medical modeling (IMM) can solve.
First, it is important to correctly diagnose each individual
patient’s disease, not an idealized textbook disease. Second,
it is important to diagnose the specific source of each unique
patient disease. This diagnosis typically requires an analysis
of molecular and cellular conditions that describes the
disease of each patient. Third, it is important to predict an
individual patient’s specific disease progress over multiple
scenarios, particularly in scenarios without therapeutic inter-
vention. Fourth, it is important to identify therapeutic solu-
tion options to the precise patient disease. Fifth, it is impor-
tant to predict the therapy success of different therapy
options in different situations.

[0009] Only the application of IMMs and Al can solve
complex medical problems in a personalized way. IMMs
optimize personalized medicine by precisely identifying a
disease diagnosis, providing prognostic predictions of the
disease progress and supplying therapeutic options and
adaptations. IMMs are applied to solve complex medical
challenges. For example, IMMs are applied to solving
complex and difficult pathologies, including cardiovascular
disease, neurogenerative disease and cancer. IMMs are
applicable to orphan, genetic and rare diseases as well.
IMMs are applied to optimize drug clinical trials in order to
make them more effective and time and cost eflicient. In
addition, IMMs are applied to preemptive medicine in order
to develop a personalized approach to anticipating chronic
diseases. Moreover, IMMs are applied to autoimmune dis-
eases by solving individualized chronic disease challenges
involving dysregulation of the immune system. Finally,
IMMs are applied to one of the most challenging problems
in medicine, viz., the complex problem of metastatic cancer.
[0010] The present invention consists of a medical mod-
eling architecture comprised of thirteen levels and about 80
major categories, including IMM categories representing
diagnostic levels, therapeutic levels, prognostic levels and
general medicine levels. In addition, the invention reveals
connections regarding the functional dynamics between the
IMM categories.

[0011] The invention discloses the mechanics of the IMM
system, including software components, Al and ML com-
ponents, personal health assistants (PHAs) and an integrated
health record platform (IHRP). The invention shows the
application of ML and GenAl to IMMs for medical diag-
nostics, prognostics and therapeutics. The invention dis-
closes novel 3D geometric deep learning (GDL) and novel
generative 3D GDL techniques and algorithms applied to
IMMs with applications to medical diagnostics, prognostics
and therapeutics.

[0012] IMMs are shown applied to medical diagnostics.
IMMs are applied to biomarker analysis as well as identi-
fication of novel biomarkers. The invention discloses how to
apply in silico experiments in IMMs for diagnostics, includ-
ing with applications of ML and GenAl. IMMs are shown
applied to cardiovascular, neurodegenerative and oncology
pathology applications.

[0013] IMMs are also shown applied to diagnostic prog-
nostics, including biomarker analysis for prognostics, in
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silico experiments for prognostics and applications of ML
and GenAl to IMMs for diagnostic prognostics.

[0014] The invention discloses the application of IMMs to
therapeutics. IMMs are shown with applications to drug
discovery, including drug discovery modeling and experi-
ments, with applications of ML and GenAl.

[0015] IMMs are shown with applications to novel syn-
thetic drug design, including with applications of ML and
GenAl.

[0016] IMMSs are shown applied to therapeutic prognos-
tics. For example, models indicating biomarkers for thera-
peutics prediction with feedback are shown as well as
applications of ML and GenAl to IMMs for therapeutic
prognostics.

[0017] IMMs are shown applied to drug clinical trials,
preemptive medicine, autoimmune disorders and metastatic
cancer. These applications illustrate the utility of IMMs to
personalized medicine with a goal to identify and solve
complex diseases.

Novelties of the Invention

[0018] The present invention presents many novelties. The
present invention presents a novel medical modeling archi-
tecture that consists of scores of IMM categories configured
into several differentiated biomedical levels. The connec-
tions and data flows between the IMM categories are novel.
This original medical modeling architecture for precision
individualized medicine represents the connective tissue of
digitalization for personalized medicine. Consequently, the
present system delineating a medical modeling architecture
supply clinicians with integrated medical solutions for com-
plex molecular, cellular and macro medical challenges.
[0019] The invention is configured to collect medical data
on each patient. These patient medical data—including
DNA, RNA and protein biomarker data—are identified and
analyzed by applying Al and ML techniques. Some of these
Al, ML and GenAl algorithms are novel. The IMMs are built
and analyzed by applying personalized health assistants
(PHAs), software agents that collect, aggregate and analyze
patient biomedical data. In addition, a novel digital medical
record system, which tracks patient medical information, is
shown applied to IMMs.

[0020] The invention shows a novel approach to applying
IMMs to diagnostics, viz., with biomarker identification and
analysis. The present MMs generate disease diagnostics
with Al and ML analyses, which is useful for clinicians to
identify patient pathologies on an individualized basis.
[0021] The invention provides IMMs to model 3D protein
and cell structures by developing simulations that revolu-
tionize medical diagnostics. In addition, the MMs of the
invention develop simulations of healthy protein pathways
and dysfunctional protein pathways, thereby showing pre-
cisely the source of individual diseases. Furthermore, the
MMs are applied to develop 4D simulations of protein-
protein interactions of dysfunctional proteins, illustrating
how individual diseases operate.

[0022] The invention describes a novel approach for diag-
nostic prognostics by applying IMMs. The system is con-
figured to track and analyze patient biomarkers, which
enable pathology prognosis scenario development, particu-
larly without therapeutic intervention. In addition, the sys-
tem is useful for enabling preemptive prediction of disease
development.
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[0023] The invention shows how IMMs are applied to
generate therapy solution options to match patient disease
diagnoses. The system applies MMs for drug development
in order to promote personalized medicine for targeting a
molecular (gene or protein) target. MMs are also applied to
generate novel synthetic drug design to fit a unique target.
[0024] The invention describes novel approaches for
therapeutic prognostics. The IMMs are applied to predict the
application of patient reactions to drugs. These therapeutic
prognostics are useful to adapt therapy with the latest data on
drug effects.

[0025] The invention describes the application of software
agents to IMMs. The system applies novel Al techniques to
MMs. In addition, a novel Al method—namely, 3D geomet-
ric deep learning (3D GDL)—with applications to several Al
techniques is described. This original Al approach is shown
in the context of specific MM applications, particularly
involving therapeutic drug design.

[0026] The invention shows novel applications of IMMs
to drug clinical trials. MMs enable precision drug clinical
trials with Al and ML analyses. Particularly in the context of
precision medicine in which specific drugs are configured to
treat specific genetic disorders or specific abnormal proteins
in dysfunctional cells, it is shown how the invention applies
MMs to optimize personalized medicine. It is also shown
how to construct an original social network connecting
physicians of patients with orphan diseases, on the one hand,
and bio or pharma companies, on the other hand, for
aggregating clinical trials worldwide.

[0027] The invention applies the novel medical modeling
system to preemptive medicine in order to enable clinicians
to identify and track disease before they manifest, thereby
saving patients years of time and quality of life.

[0028] The invention also applies the novel IMM system
to autoimmune and inflammatory diseases. Moreover, the
invention applies the novel IMM system to the medical
challenge of metastatic cancer.

[0029] While throughout the description of the invention,
several interesting classes of medical challenges are dis-
cussed as examples of application of the IMM system,
including cardiovascular disease, neurology and psychiatry,
numerous prominent cancers and autoimmune diseases, the
invention is not limited to the diagnoses, prognostics or
therapeutics of a particular type of disease.

Advantages of the Invention

[0030] The present invention has many advantages. One
prominent advantage of the present system refers to Al-
based MM ability to target precise disease diagnoses,
thereby saving clinicians and patients time and money. The
Al-enabled MM modeling system shows a drug develop-
ment process that is targeted and precise, thereby finding
medical solutions faster, saving time and money. The Al-
enabled MM system for personalized clinical trials also
saves time and money.

[0031] The present invention applies Al-enabled MM to
prediction of disease evolution, which helps to establish
realistic expectations. The Al-enabled MM system also
provides ways to predict therapy reactions, which saves time
and money, and enables the adaptation and optimization of
individualized therapies.

[0032] The present invention utilizes medical databases,
biomarker analyses and Al to construct IMMs to solve
difficult medical challenges with greater accuracy, thereby
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promoting personalized medicine. The system enables medi-
cal researchers to find precise solutions to hard medical
challenges by applying the tools of Al and in silico experi-
mentation integrated in the individualized medical modeling
system.
[0033] The present invention applies IMMs for personal-
ized medicine to solve individual patient medical chal-
lenges. The system enables clinicians to model patient
diseases, which facilitates accurate diagnoses and identifi-
cation of precision therapies, including drug discovery and
novel drug design.
[0034] Consequently, this revolutionary technology fur-
thers the paradigm of medicine 4.0, according to which
medicine is digitized and integrated with artificial intelli-
gence, to identify and solve complex medical challenges.
[0035] Reference to the remaining portions of the speci-
fication, including the drawings and claims, will realize
other features and advantages of the present invention.
Further features and advantages of the present invention, as
well as the structure and operation of various embodiments
of the present invention, are described in detail below with
respect to accompanying drawings.
[0036] It is understood that the examples and embodi-
ments described herein are for illustrative purposes only and
that various modifications or changes in light thereof will be
suggested to persons skilled in the art and are to be included
within the spirit and purview of this application and scope of
the appended claims. All publications, patents, and patent
applications cited herein are hereby incorporated by refer-
ence for all purposes in their entirety.
[0037] Overview of Individualized Medical Modeling
System Architecture
[0038] 1. Individualized Medical Modeling Logic
[0039] 2. Biological System Analysis
[0040] 3. Main Medical Modeling Map
[0041] a. Level 1: General Patient Model
[0042] b. Level 2: Diagnostics, Bioinformatics,
Organ and Body System Analyses
[0043] c. Level 3: Molecular and Cellular Descrip-
tion and Analysis
[0044] d. Level 4: Structural Genetic Variant Com-
bination Pathology Identification
[0045] e. Level 5: Functional Molecular and Cellular
Pathology Diagnosis

[0046] f Level 6: Diagnostic Prognosis Simulations

[0047] g. Level 7: General Therapy Solutions

[0048] h. Level 8 Unique Therapy Solution Genesis

[0049] i. Level 9: Therapy Option Testing and Simu-
lations

[0050] j. Level 10: Therapy Prediction Scenarios
[0051] k. Level 11: Unified Patient Model
[0052] 1. Level 12: Human Population Model
[0053] m. Level @: Master Individualized Medical
Model
[0054] 4. Functional Dynamics Between MM Catego-
ries
[0055]
System
[0056]
[0057]
[0058]

Mechanics of Individualized Medical Modeling

1. Software for IMMs

2. Al and ML Applied to IMMs
a. ML Applied to IMMs

[0059] b. GenAl Applied to IMMs

[0060] c. Geometric Deep Learning (GDL) Applied
to IMMs
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[0061]
[0062]
IMMs
[0063] f. Novel Generative 3D GDL Techniques
Applied to IMMs
[0064] 3. Personal Health Assistants (PHAs) as Multi-
functional Intelligent Software Agents Applied to
IMMs
[0065]
[0066]

d. Generative GDL Applied to IMMs
e. Novel 3D GDL Techniques Applied to

a. PHA Mechanics
b. PHAs for Modeling Functions
[0067] c. PHA Typology
[0068] 4. Integrated Health Record Platform: Integrat-
ing IMMs, Health Data Management, Medical Data
Security and Patient Relationship Management
[0069] a. IHRP and IMMs
[0070] b. Patient Data Security Management in IHRP
[0071] c. Patient Relationship Management
[0072] Individualized Medical Modeling for Diagnostics
[0073] 1. IMMs for Personalized Medicine (PM) Diag-
nostics
[0074] 2. Biomarker Analysis in IMMs for Diagnostics
[0075] 3. Identification of Novel Biomarkers in IMMs
[0076] 4. In Silico Experiments for Diagnostics in
IMMs
[0077] 5. Applications of ML and GenAl to Diagnostics
in IMMs
[0078] 6. IMMs Applied to Analyzing Diagnostics in
Critical Diseases
[0079] a. Cardiovascular Applications
[0080] b. Neurological and Psychiatric Applications
[0081] c. Oncology Applications
[0082] 7. Individualized Medical Modeling for Diag-
nostic Prognostics
[0083] a. Biomarker Analysis in IMMs for Prognos-
tics
[0084] b. In Silico Experiments for Diagnostic Prog-
nostics in IMMs
[0085] c. Applications of ML and GenAl to Diagnos-
tic Prognostics in IMMs
Individualized Medical Modeling for Therapeutics
[0087] 1. Drug Discovery with IMMs
[0088] a. Personalized Medicine with IMMs Applied
to Drug Discovery
[0089] b. IMMs and In Silico Laboratory: Drug Dis-
covery Modeling and Experiments
[0090] c. Applications of ML and GenAl to Thera-
peutics Drug Discovery with IMMs
[0091] 2. Novel Synthetic Drug Design with Individu-
alized Medical Modeling
[0092] a. Applications of ML and GenAl to Novel
Synthetic Drug Design with IMMs
[0093] 3. Individualized Medical Modeling for Thera-
peutic Prognostics
[0094] a. Biomarkers in Therapeutics Prediction with
Feedback
[0095] b. Applications of ML and GenAl to Thera-
peutic Prognostics in IMMs

[0086]

[0096] Applications of Individualized Medical Modeling
System

[0097] 1. Drug Clinical Trials with IMMs

[0098] 2. Pre-emptive Medicine with IMMs

[0099] 3. Autoimmune and Inflammatory Disease

Analyses with IMMs
[0100] 4. Metastatic Cancer Analysis with IMMs
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List of Acronyms

Al Artificial intelligence
API Application programming interface
ASIC: Application specific integrated circuit
CAR T: Chimeric antigen receptor T cells
[0105] CPLD: Complex programmable logic device
[0106] CRBM: Conditional restricted Boltzmann
machine
[0107] DL: Deep learning
[0108] DNA: Deoxyribonucleic acid
[0109] EGGNet: Equivariant graph of graphs neural
network
[0110] EHR: Electronic health record
[0111] EMR: Electronic medical record
[0112] FPGA: Field programmable gate array
[0113] GAE: Graphical autoencoder
[0114] GAN: Generative adversarial network
[0115] GAT: Graph attention network
[0116] GenAl: Generative Al
[0117] GCN: Graph convolutional neural network
[0118] GCNN: Generative convolutional neural net-
work
[0119]
[0120]
[0121]
[0122]
[0123]
[0124]
[0125]
[0126]
[0127]
[0128]
[0129]
[0130]
[0131]
[0132]
[0133]
[0134]
[0135]
[0136]
[0137]
[0138]
[0139]
[0140]
[0141]
[0142]
[0143]
[0144]
[0145]
[0146]

[0101]
[0102]
[0103]
[0104]

GDL: Geometric deep learning

GNN: Graph neural network

GPT: Generative pre-trained transformer
GPU: Graphic processing unit

HBM: High bandwidth memory

IHRP: Integrated Health Record Platform
IMM: Individualized medical model
LLM: Large language model

MAS: Multi-agent system

ML: Machine Learning

MM: Medical model

MSA: Multi sequence alignment

MVN: Manifold valued neural network
NGS: Next generation sequencing

NLP: Natural language processing

PDE: Partial differential equations
PDSM: Patient data security management
PHA: Personal Health Assistant

PLM: Protein language model

PM: Personalized Medicine

PRM: Patient relationship management
RAG: Retrieval augmented generation
RBM: Restricted Boltzmann machine
RNA: Ribonucleic acid

SCN: Spherical convolutional neural network
SNP: Single nucleotide polymorphism
SoC: System on a chip

VAE: Variational autoencoder

BRIEF DESCRIPTION OF THE DRAWINGS

[0147] FIG. 1 is a table describing medical modeling
architecture and modeling typology categories.

[0148] FIG. 2 is a table showing artificial intelligence
categories applied to biomedical modeling technologies.
[0149] FIG. 3 is a table showing an RNA typology.
[0150] FIG. 4 is a table showing biomarkers of disease
types.

[0151] FIG. 5 is a table showing a protein object structure
classification system and neural network type matching.
[0152] FIG. 6 is a block diagram of the general medical
modeling system architecture.
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[0153] FIG. 7 is a diagram illustrating a comparison of
healthy protein structure and unhealthy protein structure
models.

[0154] 8 is a diagram showing dysfunctional protein struc-
tural functionality.

[0155] FIG. 9 is a diagram showing dysfunctional protein
outcome probabilities.

[0156] 10 is a diagram showing 3D and 4D models of
abnormal protein structure and function.

[0157] FIG. 11 is a diagram showing IMMs analyzing
abnormal protein structure and configuring solutions.
[0158] FIG. 12 is a diagram showing IMM analysis of
biomarkers to identify patient pathology.

[0159] FIG. 13 is a flow chart showing the process of
disease discovery utilizing IMMs.

[0160] FIG. 14 is a flow chart showing the process of
moving from diagnostics to therapeutics by utilizing IMMs.
[0161] FIG. 15 is a diagram showing IMMs applied to
personalized medicine to assess a patient’s disease diagnosis
and prognosis.

[0162] FIG. 16 is a diagram showing a database table
describing abnormal protein expression on a spectrum.
[0163] FIG. 17 is a flow chart showing the process of
applying IMMs to identify therapeutic solutions to unique
pathologies.

[0164] FIG. 18 is a diagram showing IMM categories.
[0165] FIG. 19 is a diagram showing the medical model-
ing architecture outline with data pipelines.

[0166] FIG. 20 is a diagram showing IMMs as active
models.
[0167] FIG. 21 is a diagram illustrating databases input-

ting data into an IMM that generates models.

[0168] FIG. 22 is a diagram showing PHAs performing
functions in IMMs.

[0169] FIG. 23 is a diagram showing data flows between
layers of the IMM system.

[0170] FIG. 24 is a diagram showing IMM inter-layer
dynamics of layers within each level.

[0171] FIG. 25 is a diagram showing inter-level data
sharing within the IMM system.

[0172] FIG. 26 is a diagram showing dynamics of rela-
tions between layers of different levels.

[0173] FIG. 27 is a diagram showing PHAs facilitating
two or more simultaneous data exchanges between layers.
[0174] FIG. 28 is a diagram showing the simultaneous
processing of two or more MMs or simulations in the IMM
system.

[0175] FIG. 29 is a diagram showing the application of
APIs between levels and PHAs between layers of some
levels connecting MM types in the IMM system.

[0176] FIG. 30 is a diagram showing two or more models
on two or more layers communicating data to other models
on different layers in the IMM system.

[0177] FIG. 31 is a diagram showing GDL techniques
applied to analyze protein and cellular geometric properties.
[0178] FIG. 32 is a diagram showing GDL techniques
applied to identify abnormal gene, RNA and protein geo-
metric properties.

[0179] FIG. 33 is a diagram showing GDL techniques
applied to compare abnormal proteins to optimal proteins.
[0180] FIG. 34 is a diagram showing GDL techniques
applied to predict anomalous protein structure and function.
[0181] FIG. 35 is a diagram showing graph neural network
general architecture.
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[0182] FIG. 36 is a diagram showing graph representation
of an input object in a GNN.

[0183] FIG. 37 is a diagram showing a 3D graph repre-
sentation of a 3D graph neural network input.

[0184] FIG. 38 is a diagram showing a 3D GNN analysis
of a 3D object and prediction of node connections.

[0185] FIG. 39 is a diagram showing 3D GNN with
convolutional layers to output probabilistic options, with
convolution layers applying different filters.

[0186] FIG. 40 is a diagram showing a 3D object con-
verted to a 3D matrix and layer sampling for conversion to
a 3D graph.

[0187] FIG. 41 is a diagram showing a 3D object con-
verted to a 3D graph and nodes weighted in preparation for
3D GAT NN.

[0188] FIG. 42 is a diagram showing connections between
3D object nodes that are weighted and messages sent
between nodes in a 3D GAT NN.

[0189] FIG. 43 is a diagram showing attention scores
aggregated for nodes and connections for presentation to 3D
GAT NN.

[0190] FIG. 44 is a diagram showing a 3D GNN with
convolutional and GAT hybrid configuration to predict pro-
tein interaction.

[0191] FIG. 45 is a diagram showing a 3D graph of graph
NN inputting two types of node and connection analyses.
[0192] FIG. 46 is a diagram showing two types of vectors
analyzed in a 3D GoGNN.

[0193] FIG. 47 is a diagram showing a 3D autoencoder
GNN model.
[0194] FIG. 48 is a diagram showing a 3D MV-GNN of a

3D abnormal protein with curved surfaces.

[0195] FIG. 49 is a diagram showing a protein LLM
comparing healthy protein structure data to abnormal protein
structure data.

[0196] FIG. 50 is a diagram showing a 3D GNN analyzing
an abnormal protein structure.

[0197] FIG. 51 is a diagram showing a 3D GNN analyzing
an abnormal protein structure to generate solution options.
[0198] FIG. 52 is a diagram showing an MM analyzing
abnormal biomarkers and comparing the abnormal biomark-
ers to healthy DNA, RNA, proteins and antibodies, with an
MM applying 3D GDL types to construct a novel synthetic
drug to match to the drug target.

[0199] FIG. 53 is a diagram showing synthesis of an LLM
and 3D GDL to identify, generate and test a novel synthetic
protein.

[0200] FIG. 54 is a diagram showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic antibody.

[0201] FIG. 55 is a flow chart showing the synthesis of an
LLM and GDL to identify, generate and test a novel syn-
thetic gene and transcription process.

[0202] FIG. 56 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test novel
synthetic RNA and translation process.

[0203] FIG. 57 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic small molecule.

[0204] FIG. 58 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic DNA, RNA, protein or antibody to modify stem
cells.
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[0205] FIG. 59 is a diagram showing a 3D GNN as
descriptive of an abnormal protein and predictive of abnor-
mal protein interactions.

[0206] FIG. 60 is a diagram showing an LLM-GNN
hybrid model.
[0207] FIG. 61 is a diagram showing 3D GNNs connected

to a 3D database management system.

[0208] FIG. 62 is a diagram showing APIs in the MM
system.
[0209] FIG. 63 is a diagram showing the process of novel

synthetic drug design.

[0210] FIG. 64 is a diagram showing an intelligent medi-
cal modeling system.

[0211] FIG. 65 is a diagram showing MM data interaction.
[0212] FIG. 66 is a diagram showing PHAs generating
medical summaries from medical articles, databases or
LLMs.

[0213] FIG. 67 is a diagram showing PHAs accessing
patient medical test data and EMR, EHR and IHR data to
build an IMM.

[0214] FIG. 68 is a diagram showing specialized PHAs in
a multi-agent system applying skills to perform functions
and communicate with each other.

[0215] FIG. 69 is a diagram showing a PHA combining
two or more Al techniques or algorithms into a hybrid Al
technique or algorithm and applied to an MM.

[0216] FIG. 70 is a diagram showing PHAs supplying
different Al techniques or algorithms to different types of
MMs.

[0217] FIG. 71 is a diagram showing PHAs acting as
interfaces with doctors, a patient MM and patient tasks.
[0218] FIG. 72 is a diagram showing PHAs collecting and
analyzing health data to develop diagnostic, prognostic or
therapeutic solutions.

[0219] FIG. 73 is a diagram showing PHAs generating
MM, analyzing incomplete data and solving MM problems
over time.

[0220] FIG. 74 is a diagram showing PHAs conducting in
silico experiments to compare dysfunctional proteins to
reference genes, RNA and proteins.

[0221] FIG. 75 is a diagram showing PHAs enabling an
MM to supply diagnostic, prognostic and therapeutic solu-
tions.

[0222] FIG. 76 is a block diagram showing PHA system
dynamics.

[0223] FIG. 77 is a list of THRP levels.

[0224] FIG. 78 is a diagram showing a natural language

processing program analyzing health data that are input to
the THRP and MMs.

[0225] FIG. 79 is a diagram showing an IHRP interacting
with MMs and generating patient health records.

[0226] FIG. 80 is a diagram showing the PDSM system
layers.
[0227] FIG. 81 is a diagram showing the PDSM filtering

patient security for MMs.

[0228] FIG. 82 is a diagram showing patient abnormal
proteins analyzed and compared to healthy proteins to assess
a patient disease in an IMM.

[0229] FIG. 83 is a diagram showing a MiR database of
biomarker types that indicate the presence of a disease.
[0230] FIG. 84 is a flow chart showing how multiple
biomarkers are analyzed to assess the sources of diseases.
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[0231] FIG. 85 is a diagram showing protein abnormalities
ranked on a scale based on geometrical configuration dis-
tortion degree.

[0232] FIG. 86 is a flow chart showing MMs performing
biomarker analyses.

[0233] FIG. 87 is a diagram showing an MM analyzing
many biomarkers to identify several critical biomarkers as a
source of disease and as drug targets.

[0234] FIG. 88 is a flow chart showing the reverse engi-
neering process for identifying novel biomarkers.

[0235] FIG. 89 is a flow chart showing the process of
pathology analysis from a gene mutation to tracking abnor-
mal protein pathways.

[0236] FIG. 90 is a diagram of different biomarkers asso-
ciated with different phases of disease progress.

[0237] FIG. 91 is a diagram of Al and ML algorithms
applied in an IMM to patient pathology biomarker data to
evaluate protein and cellular dynamics.

[0238] FIG. 92 is a flow chart showing an MM generating
in silico experiments to test and analyze patient biomarkers
to identify the source of disease.

[0239] FIG. 93 is a diagram showing an IMM performing
in silico experiments to assess patient abnormal proteins and
propose a diagnosis.

[0240] FIG. 94 is a diagram showing an IMM analyzing
biomarkers to identify genetic variant combinations that
reveal disease targets.

[0241] FIG. 95 is a diagram showing an IMM performing
in silico experiments of protein and drug interaction pro-
cesses and building simulations.

[0242] FIG. 96 is a diagram showing an IMM performing
in silico simulations of DNA, RNA, protein and cellular
processes.

[0243] FIG. 97 is a diagram showing a healthy reference
model compared to a patient pathology model in order to
assess the evolution of a disease.

[0244] FIG. 98 is a diagram showing protein and cellular
interaction processes simulated in IMMs.

[0245] FIG. 99 is a diagram showing diagnostic prognosis
identifying and tracking DNA, RNA and protein degradation
and evolution.

[0246] FIG. 100 is a diagram showing an MM comparing
patient disease analysis and aggregate patients’ diseases and
their evolution to develop a prognosis of patient disease.
[0247] FIG. 101 is a diagram showing different patient
disease progress scenarios mapped and rated.

[0248] FIG. 102 is a diagram showing MMs receiving and
analyzing quality and quantify biomarker data in order to
predict a pathology evolution.

[0249] FIG. 103 is a diagram showing biomarker data
analyzed in MMs to predict disease prognosis and assign a
prognosis score.

[0250] FIG. 104 is a diagram showing biomarker data
analyzed in MMs in snapshots over four phases with dif-
ferent probable scenario outcomes over time.

[0251] FIG. 105 is a diagram showing an MM analyzing
biomarker data to assess the evolution of patient disease
outcomes.

[0252] FIG. 106 is a flow chart showing biomarker analy-
sis in MMs to identify a pathology evolution and drug
targets.

[0253] FIG. 107 is a diagram showing MMs applying in
silico experiments to analyze biomarker data, develop 3D
and 4D simulations and map probable pathology scenarios.
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[0254] FIG. 108 is a diagram showing a micro-prognostics
analysis applied in silico experiments in MMs to compare
healthy and dysfunctional proteins and predict disease prog-
ress.

[0255] FIG. 109 is a diagram showing an MM applying in
silico experiments to identify a drug target and drug-target
fit and making drug-disease predictions.

[0256] FIG. 110 is a diagram showing a process to identify
patient pathology on a molecular level.

[0257] FIG. 111 is a diagram showing MMs applying ML
and Al to analyze biomarker data to diagnose a patient
disease and to develop therapeutic drug options.

[0258] FIG. 112 is a flow chart showing MMs identifying
and testing drug solutions for a drug target.

[0259] FIG. 113 is a diagram showing abnormal protein
and antibody targets and application of mRNA solutions.
[0260] FIG. 114 is a flow chart showing an MM applying
CADD to construct and test different hypothesis to solve a
drug target.

[0261] FIG. 115 is a flow chart showing MMs identifying,
evaluating and updating drug therapy options to solve
patient pathology.

[0262] FIG. 116 is a flow chart showing MMs applied to
describe the precise molecular geometry of a dysfunctional
protein and to custom design a novel synthetic drug therapy.
[0263] FIG. 117 is a diagram showing GenAl and GDL
algorithms applied to a protein language model to develop a
novel protein or small molecule to solve a dysfunctional
drug target.

[0264] FIG. 118 is a flow chart showing a GDL applied to
describe dysfunctional protein and GenAl applied to custom
design a drug solution.

[0265] FIG. 119 is a flow chart showing MMs designing
and testing novel drugs to match a dysfunctional protein
target by applying Al and ML techniques.

[0266] FIG. 120 is a diagram showing 3D GDL applied to
describe dysfunctional protein and 2D GenGDL and 3D
GenGDL applied to design novel drug therapies.

[0267] FIG. 121 is a diagram showing antibody specific
protein LLMs, GenAl and GenGDL applied to MMs to
construct a novel antibody.

[0268] FIG. 122 is a flow chart showing GenAl, 2D
GenGDL or 3D GenGDL applied to MMs to design novel
siRNA code, novel ligands and novel enzymes.

[0269] FIG. 123 is a diagram showing an MM designing
a novel synthetic drug to optimize structural properties to fit
a drug target.

[0270] FIG. 124 is a diagram showing MMs designing
several classes of novel customized synthetic biologics.
[0271] FIG. 125 is a diagram showing Al-endowed PHAs
collecting biological data for MM analysis of diagnostics,
prognostics and therapeutics.

[0272] FIG. 126 is a diagram showing therapeutic prog-
nostics describing drug options on disease progress and
predicting a drug’s effect on a disease.

[0273] FIG. 127 is a diagram showing different drugs
providing effects on disease evolution and assigning drug
reaction probability scores.

[0274] FIG. 128 is a flow chart showing an MM analyzing
and comparing a patient’s disease progress with and without
drug therapy.

[0275] FIG. 129 is a diagram showing an MM analyzing
and comparing effectiveness of two drugs on a patient
disease progress.
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[0276] FIG. 130 is a diagram showing biomarker mea-
surements applied to compare disease progress with and
without intervention.

[0277] FIG. 131 is a diagram showing drug therapy inter-
vention applied, assessed (via biomarkers) and modified to
show pathology improvement. [0175]132 is a diagram
showing an MM analyzing patient biomarkers to assess
pathology progress and recommending a modified therapy
that shows major improvement.

[0278] FIG. 133 is a diagram showing an MM evaluating
small molecule therapy biomarker feedback and recom-
mending a novel synthetic drug which shows positive effect.
[0279] FIG. 134 is a diagram showing an MM analyzing
a protein target, identifying a drug candidate and assessing
the drug candidate effects on the protein target.

[0280] FIG. 135 is a diagram showing an MM assessing
disease progress with and without therapy intervention.
[0281] FIG. 136 is a diagram showing an MM evaluating
two drug therapy options in relation to no therapy control
and ranking two therapy effects.

[0282] FIG. 137 is a diagram showing an MM identifying,
predicting and recommending various drug therapy options
to solve a patient pathology.

[0283] FIG. 138 is a diagram showing an MM analyzing
biomarkers to predict or select treatment options.

[0284] FIG. 139 is a diagram showing an MM analyzing
patient biomarkers on a scale and recommending different
drug treatments at different times in evaluation of disease
progress.

[0285] FIG. 140 is a diagram showing an MM tracing a
control arm of drug clinical trials.

[0286] FIG. 141 is a diagram showing an MM applied to
drug clinical trials for precision diagnosis and emulation of
virtual patients.

[0287] FIG. 142 is a flow chart showing MMs analyzing
and aggregating patient data in the active arm of clinical
trials.

[0288] FIG. 143 is a diagram showing MMs applied to
track active arm patient progress and compare to control arm
patient progress.

[0289] FIG. 144 is a diagram showing an MM comparing
and aggregating control and active arms data.

[0290] FIG. 145 is a diagram showing an MM applied to
analyze biomarker data feedback of a drug to target a
specific protein and analyze molecular interactions to show
drug effectiveness.

[0291] FIG. 146 is a diagram showing an MM diagnosing
a precise disease (and identifying abnormal protein targets)
and identifying drug candidate options to match to the
protein targets.

[0292] FIG. 147 is a diagram showing an MM analyzing
aggregated control arm and active arm data.

[0293] FIG. 148 is diagram showing an MM analyzing
hybrid control arm (including virtual patients) diagnostic
prognostics data and active arm therapeutic prognostics
data.

[0294] FIG. 149 is a diagram showing an MM analyzing
therapeutic prognostics biomarker data from application of
a drug candidate and modifying the drug to optimize effec-
tiveness.

[0295] FIG. 150 is a diagram showing an MM predicting
drug performance and modifying the drug when actual
performance lags.
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[0296] FIG. 151 is a diagram showing MMs analyzing
biomarker data from clinical trial phases I and II to assess a
drug candidate and modifying or replacing the drug in phase
IIL.

[0297] FIG. 152 is a flow chart showing MMs analyzing
different patient genetic, RNA or protein abnormalities in
stratified sub-types to apply drug candidates to different
patient clusters.

[0298] FIG. 153 is a diagram showing an MM applied to
analyze the source of a genetic disease and to identification
of a drug to treat the disease.

[0299] FIG. 154 is a diagram showing a patient relation-
ship management program coordinating clinical trials with
MMs and PHAs.

[0300] FIG. 155 is a flow chart showing drug companies
generating a doctor network to coordinate clinical trials on
targeted patients.

[0301] FIG. 156 is a diagram showing an MM generating
virtual control arm data from diagnostic prognostics data to
compare to therapeutic prognostics data of the active arm.
[0302] FIG. 157 is a flow chart showing MMs applied to
generate synthetic patient data to use as virtual patient data
of a hybrid control arm of drug clinical trials.

[0303] FIG. 158 is a diagram showing an MM assessing
patient genetic and hereditary data to diagnose, predict and
treat patient diseases that may develop in the future.
[0304] FIG. 159 is a flow chart showing MMs analyzing
patient biomarker data to develop pre-emptive pre-diagnos-
tic prediction of a probable future patient disease.

[0305] FIG. 160 is a diagram showing an MM analyzing
biomarker data to assess probable scenarios of neuro-degen-
erative disease development trajectories over time.

[0306] FIG. 161 is a diagram showing an MM applying Al
and ML to analyze biomarker and biomedical database data
to identify future disease progression scenarios.

[0307] FIG. 162 is a diagram showing an MM developing
and testing therapeutic options after pre-diagnosis of prob-
able disease progression.

[0308] FIG. 163 is a diagram showing an MM applying,
assessing and moditfying drug therapy options in pre-emp-
tive personalized medicine.

[0309] FIG. 164 is a diagram showing an MM stratify
autoimmune disease subgroups by analyzing different
classes of molecular biomarkers.

[0310] FIG. 165 is a diagram showing an MM developing
a diagnosis and diagnostic prognosis of an autoimmune
disease.

[0311] FIG. 166 is a diagram showing MMs building
models that design novel synthetic proteins and novel syn-
thetic antibodies.

[0312] FIG. 167 is a flow chart showing an MM designing
novel synthetic therapies to solve abnormal autoimmune
behaviors and optimizing a patient’s immunity.

[0313] FIG. 168 is a diagram showing an MM identifying
and reprogramming B cell receptors to bind an antibody to
a specific antibody target.

[0314] FIG. 169 is a diagram showing an MM designing
T cells to attack over-active B cells that overproduce autoan-
tibodies that attack autoantigens in CAAR T therapy.
[0315] FIG. 170 is a flow chart showing an MM applying
therapeutic modalities of SMC stem cells and RNA editing
to modify T cells and limit generation of autoantibodies.
[0316] FIG. 171 is a list showing metastatic cascade
stages.
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[0317] FIG. 172 is a diagram showing a modified thera-
peutic modality applied to treat a secondary tumor.

[0318] FIG. 173 is a diagram showing therapies applied to
address CTCs at stages 3, 4 and 5 after unique stage
biomarkers are identified.

[0319] FIG. 174 is a diagram showing ctDNA of CTCs at
secondary tumor site enabling the identification of a primary
tumor site.

[0320] FIG. 175 is a diagram showing metastasized cancer
cells, with modified genetic profiles, reprogrammed in their
new tissues.

[0321] FIG. 176 is a diagram showing CSC’s reprogram-
ming protein pathways to resist drugs and immunity and
reprogramming a secondary tumor site micro-environment.
[0322] FIG. 177 is a diagram showing detection of mRNA
and ctDNA biomarkers predicting drug and immunity resis-
tance at secondary tumor sites.

[0323] FIG. 178 is a diagram showing an MM analyzing
biomarkers to diagnose, predict and treat cancer at each
stage of development.

[0324] FIG. 179 is a diagram showing an MM applying
different AI and ML techniques for cancer diagnostics,
prognostics and therapeutics.

[0325] FIG. 180 is a diagram showing MMs analyzing
biomarkers at different stages of cancer metastasis, with
MMs developing novel drug therapies at each state.

DETAILED DESCRIPTION OF THE
INVENTION

Overview of Individualized Medical Modeling
System Architecture

Individualized Medical Modeling Logic

[0326] The field of medicine is experiencing the conver-
gence of several dramatic technological revolutions. First,
medical databases have developed systematic libraries of
genes, RNA and proteins. Second, next-generation sequenc-
ing (NGS) technologies have developed methods of rapidly
deciphering data on individual patient DNA, RNA, proteins
and lipids. Third, biomarker data are rapidly being identified
as markers of disease and prognosis. Fourth, artificial intel-
ligence and machine learning technologies have developed
rapidly, particularly involving neural networks and large
language models, which have the ability to predict 3D
protein structures from DNA sequence data. These advanced
models have been accelerated with the advent, fifth, of
next-generation graphic processing units (GPUs) and system
on chip (SoC) circuits. Sixth, the combination of these
technologies has enabled biological modeling technologies.
Seventh, these computer, bioinformatics and medical data
technologies together enable a personalized medicine (PM)
revolution that reveals accurate diagnostics of unique and
complex patient pathologies. Eighth, the PM revolution
supplies researchers with tools to identify targeted therapies
to treat complex patient diseases. Finally, PM enables a new
generation of precision drug clinical trials.

[0327] Since the decoding of the human genome, we have
discovered about 20,000 genes in chromosomes that inhabit
every human cell. DNA comprises a quaternary system of
biological organization that consists of nucleic acids. DNA
encodes for four nucleotides, from which about twenty
useful amino acids are constructed of three nucleotides each.
Each nucleotide is comprised of three parts—a sugar, a
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phosphate and a nitrogenous base. The sugar molecule is
deoxyribose in DNA and ribose in RNA. One-dimensional
strings of amino acids are constructed from nucleic acids,
with about twenty useful amino acids comprising the build-
ing blocks of proteins. Proteins consist of a few dozen to
thousands of amino acids.

[0328] Since protein structure data are inferred from
DNA, RNA and amino acid sequence data, correctly con-
figuring complex three-dimensional protein structure data
from one-dimensional sequence data is challenging. The
prediction of protein structure from genetic sequence data is
referred to as the “protein folding problem” (PFP) and has
eluded scientists until recently. Research teams have cracked
the code. Researchers at Meta have developed ESM-2 and
ESMFold, a 15B parameter LLM and protein structure
prediction tool, which can generate novel synthetic protein
structures. In addition, DeepMind’s AlphaFold 3 uses a
multiple sequence alignment (MSA) process and a diffusion
model to predict 3D protein structure and protein interac-
tions from one-dimensional amino acid sequence data.
Salesforce’s ProGen LLM, with 1.2B parameters, also
develops protein structure prediction. These approaches
employ protein LL.Ms according to which protein sequence
data are converted to tokens and protein patterns are ana-
lyzed. In addition to predicting 3D protein structure from
amino acid sequence data, AlphaFold 3 can also generate
novel synthetic proteins by applying diffusion model neural
networks that convert “text” sequences to images. These
LLMs operate by training massive data sets, employing
massive computer circuit capacity and steadily increasing
the LLM parameter size to optimize scaling improvements.

[0329] However, the protein folding problem only sup-
plies a reference benchmark for healthy or optimized pro-
teins. Solutions to the PFP are useful for filling in the blanks
of protein libraries in order to describe accurate 3D protein
folding of optimized proteins. But these models are silent
regarding dysfunctional proteins, which comprise the main
universe of the source of diseases. These LLMs do not
address the problem of variant genes and RNA and the
abnormal protein structures that are constructed from these
variants. Since abnormal proteins are at the root of diseases,
these LLMs are not useful for helping to predict these
unhealthy protein structures. Even beyond the abnormal
protein structures, understanding the mechanisms of abnor-
mal protein functions are particularly important to under-
standing the operation of diseases, an important feature
about which these LLMs are also silent. Therefore, these
LLMs are not seen as a solution to decipher the causes of
disease. However, the idealized and perfected protein struc-
tures generated from the LLMs are useful to show the
benchmark to which dysfunctional DNA, RNA and proteins
can be compared. In this sense, these LLMs fill in gaps of the
human genome database by accurately inferring protein
structures from genetic sequence information. Finally, while
these LLMs are useful for general biological research, they
are not applied yet to personalized medicine.

[0330] While it is useful to have a reference benchmark of
healthy DNA, RNA and proteins, what is needed is a
modelling system that can decipher DNA and RNA variants,
abnormal protein structures and dysfunctional protein opera-
tions. While the complexity of the protein folding problem
is daunting, the complexity of deciphering the challenge of
abnormal protein configurations and dysfunctional protein
operation in cellular protein network pathways is magni-
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tudes more complex. Consequently, tracking the network
pathway of a mutated gene through transcription into a
variant RNA sequence through translation into an abnormal
protein structure (that substantially varies from a healthy
protein structure) and into a dysfunctional protein operation
in a cellular network presents a biological grand challenge.
Predicting the abnormal protein structure of a mutated gene
is particularly complex since there are numerous modes of
mutation that may present which make prediction of abnor-
mal protein structure a probabilistic challenge. Such a model
needs to view pathology as a spectrum from healthy to the
most extreme pathological situations. For example, a minor
gene mutation may lead to only a minor (i.e., a single
peptide) protein structure abnormal configuration which
may have limited pathology consequences. On the other
hand, a major gene mutation, or the combinations of mul-
tiple major gene mutations, may lead to a dramatic abnormal
protein structure configuration which may have profound
adverse consequences. The problem becomes particularly
complicated when considering that many diseases have
multiple genetic mutation and protein dysfunction sources
which need to be considered in combination in order to
identify the source of a disease. Finally, it is ideal to identify
these complex sources of a patient’s disease on an individual
basis, that is, in the context of personalized medicine. How
can we find solutions to these important biochemical chal-
lenges if we do not have a clear idea of the problems
themselves of identifying gene and RNA variants and pro-
tein abnormalities and their pathology consequences?

[0331] While LLMs have utility in identifying healthy
reference gene expression and protein structures, we need
new modeling tools to solve these complex problems. We
can develop solutions to these complex biological molecular
challenges of identifying the multivariate sources of
pathologies by applying individualized medical modeling.
IMMs are useful to model abnormal protein structure con-
figurations as well as to model abnormal protein interactions
with healthy and unhealthy proteins. These 3D models
describe the geometrical configurations of abnormal protein
structures. In addition, IMMs develop 4D simulations to
describe the operational processes of abnormal proteins as
well as abnormal protein interactions and dysfunctional
protein expression in intracellular protein pathways. How
can we begin to find accurate therapeutic solutions if we
cannot first identify and model the precise configuration and
mechanics of abnormal proteins? As an analogy, this
approach to modeling biomolecular structures and processes
enables a lock and key model in which we can solve a
pathology if we can find a precise configuration of a lock
(i.e., a dysfunctional protein). Nevertheless, the ultimate
goal of medicine is to construct a key for the unique lock that
is represented in the abnormal protein(s). In this sense, we
endeavor to develop models that precisely reverse engineer
a protein or peptide solution. For example, a novel drug may
consist of development of a synthetic protein or peptide (or
RNA instructions to encode for a novel protein) to custom fit
a protein target and correct for a protein abnormality. Only
IMMs can solve these complex pathology challenges on a
fine-grained individualized basis.

[0332] Individualized medical models are comprised of
concrete and detailed patient medical data, general medical
reference data and Al-based analytics. Medical models
(MMs) are excellent at identifying and describing patient
pathologies on a fine-grained basis. In addition, MMs are
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excellent at making useful and accurate predictions of
disease progress. MMs are also excellent at making thera-
peutic recommendations based on existing treatment proto-
cols. But among the interesting aspects of MMs are their
ability to develop novel therapeutic solutions to unique
complex patient pathologies. In some cases, MMs are instru-
mental to developing a novel synthetic drug design to fit a
unique patient pathology.

[0333] Computer models are abstract mathematical repre-
sentations of real objects, phenomena or systems. Models
are representational systems generated to imitate features of
the real world. Biological modeling enables researchers to
apply computers to simulate or study biological, biochemi-
cal or biophysical objects or complex systems using math-
ematical, physical, biological or computer sciences and
techniques. Computer simulations are the process of apply-
ing mathematical modeling, performed on a computer, in
order to predict the behavior, including the causes and
effects, of physical phenomena or systems. Computer simu-
lation modeling is useful in designing, generating, evaluat-
ing and predicting complex systems by replicating a real or
proposed representation of phenomena by applying com-
puter software when changes to an actual system are par-
ticularly hard, expensive or impractical. Computer models
are created to imitate aspects of the world, to predict events
and to test hypotheses. In some cases, computer models can
not only describe objects or solve problems, but also gen-
erate novel synthetic entities. In the context of biology,
modeling can be applied to diagnostics in order to identify
pathologies or describe biomolecular phenomena, to prog-
nostics in order to predict pathology progressive events,
with and without therapeutic intervention, and to therapeu-
tics in order to identify effective drugs or to design novel
pathology solutions.

[0334] Individualized medical modeling applies computer
models, representations and simulations in order to describe,
predict, project and prescribe biological, biochemical and
biophysical phenomena. MMs are applied to molecular
phenomena, including structural molecular entities such as
gene, RNA, protein, peptide, lipid, antibody, ligand and
small molecule objects. In addition, MMs are applied to
describe actual and potential protein-protein interactions as
well as potential drug-target interactions. MMs are applied
to functional molecular entities that involve physiological
and operative processes, events and interactions. MMs are
applied to describing and predicting cellular anatomy, phe-
nomena, events, signaling and interactions. MMs are applied
to describing and predicting organ and tissue anatomy,
physiology, events and interactions. MMs are applied to
describing and predicting biosystems anatomy and func-
tions. MMs are applied to describing and predicting patient
anatomy, physiology, pathologies, activities and event pro-
gression. MMs build graphs, tables, maps, simulations and
representations of biomedical data pertaining to the afore-
mentioned molecular, cellular, organ, tissue, biosystem and
general patient ontologies. MMs describe, predict and ana-
lyze specific patient diseases. Consequently, the IMM sys-
tem models specific patient diagnostic, prognostic and thera-
peutic biological phenomena in order to identify precise
patient pathologies and to develop or design effective drug
therapies accurately targeting these precise diagnoses. The
terms “individualized medical models” (IMMs) and “medi-
cal models” (MMs) are often used interchangeably to
describe medical models that are applied to identifying and
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solving medical challenges involving individual patients. On
a practical level, MMs require or involve computer hardware
and software in order to operate. Additionally, MMs increas-
ingly require sophisticated software, including database
software, software agents, Al and ML.

Biological System Analysis

[0335] IMMs tell a story. In many cases, IMMs represent
the accumulation of multiple episodes illustrating the dis-
covery of disease pathology over the life of a patient. This
approach views IMMs as similar to chapters in a book in
which each disease event is registered in the IMM schema
for each patient. But in addition to recording the basic events
of an individual’s medical experiences, the IMM system is
also able to assist physicians by offering therapeutic recom-
mendations to diseases and even developing original thera-
peutic solutions. These complex novel drugs developed for
individual patient’s unique pathologies are the result of a
combination of accurately identifying a patient’s disease and
surveying and applying a vast range of medical research
information. The patient’s unique pathology is analyzed by
applying Al-based techniques in the IMM system, while the
IMM system also surveys and analyzes prior medical
research data in order to develop novel therapies for each
patient pathology. The IMM system also supplies accurate
predictions of disease evolution based on comparison of a
patient’s pathology condition with an analysis of the IMM’s
accessible vast medical library.

[0336] One major tool in an IMM’s assessment of a
patient pathology involves biomarkers. While biomarkers
can be biological, imaging or digital, the main tool applied
by IMMs involve biological biomarkers such as DNA, RNA
or protein analyses. In a sense, a biomarker assessment
represents a snapshot of a patient condition in time. It is
precisely an analysis of the 3D structures of the abnormal
protein and RNA biomarkers that provides the essential data
for building an accurate diagnostic picture of a patient
pathology. By combining multiple 3D biological biomarker
snapshot data, an IMM can build a 4D simulation of
dysfunctional protein interactions and abnormal cell dynam-
ics to accurately describe the biomolecular anatomy and
physiology that forms the basis for a patient pathology.
These biomarker guideposts enable the IMM system to track
and predict the phases of a patient’s disease progress over
time.

[0337] The process of disease discovery can be described
by utilizing IMMs. Once an IMM obtains gene and RNA
sequencing data, a model identifies genetic mutations. Bio-
marker data are analyzed in order to ascertain abnormal
protein structures. The IMM generates a list of gene and
RNA mutations and dysfunctional DNA, RNA or protein
biomarkers. The IMM generates a table to compare the
biomarker data to healthy protein or biomolecular data. The
IMM compares the healthy biomarker data to abnormal
protein structure and function data. The IMM analyzes
dysfunctional protein interactions and protein pathway
mechanics from the biomarker analyses. The IMM then
identifies and validates specific protein target(s) as a source
of a patient’s disease. Finally, the IMM tracks disease
progress by tracking biomarkers over time and updating the
model delineating patient pathology.

[0338] The process of moving from diagnostics to thera-
peutics can be described by utilizing IMMs. First, an IMM
identifies DNA and RNA variant data from next-generation
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sequencing (NGS) analyses. The IMM accesses biological
LLMs in order to identify healthy protein structure predic-
tion models. The IMM then identifies abnormal protein
structure model and/or abnormal protein function model
data. The IMM identifies and assesses a patient’s RNA,
protein and small molecule biomarkers. The model then
compares healthy versus abnormal protein interactions,
including protein-protein, protein-lipid, protein-small mol-
ecule, protein-disease and protein-drug interactions. The
IMM accurately identifies and describes the abnormal pro-
tein(s) that cause the patient pathology. The IMM applies
GenAl techniques to develop a novel synthetic protein to
design a drug to solve the abnormal protein pathology.
[0339] IMMs are applied to personalized medicine. PM
requires a fine-grained analysis of a patient disease in order
to develop an understanding of the disease, the disease
progress and possible therapeutic modalities. In order to
facilitate the realization of PM by IMM:s, it is necessary to
apply various biomedical and computational tools. First,
IMMs require access to data from biological and medical
databases in order to describe healthy molecular and cellular
structures and functions. These medical databases and medi-
cal research articles represent the foundation of medical
experience. Second, IMMs require bio LLM data, which
predict healthy molecular structures. Third, DNA, RNA and
protein sequence data on each individual is essential in order
for IMMs to develop a map of individual pathology. Fourth,
these biological sequence data are utilized by the IMMs to
identify biomarker data over time of individual patient
pathologies. The IMMs apply analytical tools to compare
individual patient unique gene and biomarker data to bio-
medical databases and bio LLMs. Fifth, the IMMs analyze
each patient’s biomarker data in order to track disease
progression and make analytical predictions about a disease
evolution.

[0340] In order to examine the qualities and attributes of
abnormal protein expression, MMs employ database tables.
The tables of abnormal protein expression reveal a spectrum
of dysfunctional protein manifestations. The IMM system
may engage Al techniques in order to predict abnormal
protein expression features from gene or RNA specific
mutation types. The IMM system accesses tables of gene
and RNA mutations in order to develop an analysis of
abnormal protein expression by comparing table fields.
[0341] IMMs are applied to finding therapeutic solutions
to unique pathologies. After an IMM identifies a unique
gene, RN A and/or protein dysfunction as a source of disease,
the IMM accesses medical or biological databases to obtain
a reference for optimum molecular health for comparison of
patient disease. Once the IMM identifies optimal existing
drug options to solve a patient disease, the IMM ranks the
drug options and selects an optimal drug therapy. If a drug
candidate is applied and is unsuccessful, the IMM generates
a novel synthetic drug design by applying Al techniques and
by applying in silico experiments to identify a unique drug
solution, seeking to identify a key with a good fit to a unique
lock. After a drug is applied to a patient, the IMM identifies
biomarkers to track the therapeutic prognosis. The IMM
predicts a specific drug’s effects on the patient’s disease.
[0342] While there are different ways of categorizing
IMMs, one straightforward way of typing MMs is by seeing
IMMs as Object MMs, Process MMs and System MMs.
Object MMs involve construction of 3D models that
describe an object’s structure or multiple objects’ structures.
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For example, a protein, cell, organ or drug chemical struc-
ture can be elucidated in an IMM. Process MMs are simu-
lations. These 4D sims provide a functional description of
biomedical processes. As examples, a disease evolution can
be described by showing abnormal protein evolution and
interactions in protein pathways or a DNA or protein deg-
radation process can be shown. Process MMs are akin to a
video when compared to an object MM snapshot. System
MMs are models that combine biomedical components into
unified models to enable an understanding of all elements of
a pathology. The system approach transcends a single object
or process and embraces multiple views of a medical prob-
lem.

[0343] The present system represents a sort of periodic
table of individual medical models that represents a spec-
trum from healthy patients to a broad range of patient
pathologies. The IMM system architecture consists of a set
of MM categories that reference specific medical categories
configured in a typology of functional medical levels and
layers. The foundational MM system is designed to connect
the multiple MM categories in an integrated digital fabric.
Data pipelines are organized to connect to the various MM
categories in order to supply connections to physical and
virtual objects. Al is integrated into the MM system archi-
tecture. There are dozens of distinct Al techniques and
algorithms that are applied to computational analysis of
various MM categories.

[0344] Overall, there are thirteen distinct levels of the
IMM system. Each level consists of multiple layers. Each
data category is configured in the context of this IMM
system architecture.

[0345] IMM system mechanics require hardware and soft-
ware to operate. The hardware includes computer logic and
memory circuits, while the software includes databases, data
sets, modeling software, analytics software and Al algo-
rithms. The system also includes biological and chemistry
design software.

[0346] In one mode, a physician may begin the process of
building a patient IMM with an aggregated patient model.
This generalized patient model can be typified by different
major categories such as a baby model, a toddler model, an
age-relative child model (3-18), an adult female model, an
adult male model, or a geriatric male or female model. These
healthy base IMMs are useful as a reference point. From
these reference models physicians can construct specific
patient models to which to compare patient pathologies.

[0347] Beyond the whole patient IMM, the physician can
utilize the healthy base model for biomolecular diagnostic
analyses too. The basic MM provides reference data for
gene, RNA, protein structure, protein function, cell, cell
network, tissue, organ and body system data types. The
individual patient pathology model can be compared to
reference models of healthy biomedical structural and func-
tional data.

[0348] While traditional medical models are relatively
primitive because they strive mainly to automate twentieth
century medical diagnostics, the goal of which is to identify
a symptom based disease, and twentieth century medical
therapeutics, the goal of which is to identify an existing
off-the-shelf drug or treatment to fit the simplistic diagnosis,
the present system endeavors to realize the potential of
personalized medicine by developing sophisticated models
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of accurate biomolecular descriptions of pathology as well
as novel therapeutic solutions to each unique patient pathol-
ogy.

[0349] The present system views IMMs as active models.
IMMs accumulate patient data in databases received from
multiple sources. In some cases, the models conduct ana-
lytical experiments to solve problems. In other instances, the
models seek out medical reference data from biological or
medical databases or from bio LLMs in order to complete
models akin to completing a puzzle. Each of these data
points are accumulated and analyzed. The IMMs map
patient medical temporal events, including molecular
events, cellular events and drug events. The MMs receive
patient biomarker data in order to update its models on
patient condition. These temporal elements of IMMs map
multiple patient health reports, medical tests and medical
events in order to build a picture of the patient medical
condition.

[0350] The present system includes software agents,
which are involved in different aspects of the IMM system.
Personal Health Assistants (PHAs) collect generic medical
data and specific patient medical data, build IMMs and
perform IMM analytics. The PHAs may include different
levels of autonomy. For instance, on some levels of the IMM
system, the PHAs may collect generic or patient data in
order to complete a data table. In other cases, the PHAs may
analyze patient data in order to identify a pathology diag-
nosis or predict a pathology progression. PHAs endow
IMMs with autonomy and self-awareness. In this sense, an
IMM may realize that it has insufficient information in order
to solve a diagnostic, prognostic or therapeutic problem; as
such, it may request specific information in order to accom-
plish a task, such as requesting a particular type of medical
test so as to gain insight into a dimension of a patient
pathology.

[0351] MM categories in the present IMM system can be
viewed as a complex lens system applied to assess patient
diseases and therapeutics solutions. A microscopic lens can
be applied to view molecular and cellular phenomena, which
is typically the source of complex or chronic diseases. On
the other hand, a wide-angle lens can be seen as a broader
view of a body or body systems level. The MM analyses can
be viewed as a sort of zoom lens which changes focal length
from a wide-angle view to a microscopic view. This analogy
of lens system scaling from microscopic to broad views is
useful for understanding the IMM system category interac-
tions.

[0352] The present IMM system can be applied to differ-
ent medical specialties to focus on different elements of
patient anatomy and physiology. Cardiologists will focus
primarily on heart and cardiovascular system MMs. Hema-
tologists will focus mainly on blood cells. Immunologists
will focus on the immune system and on immune cells.
Oncologists will focus on neoplasms of various cell types.
Neurologists will focus on brain and the nervous system.
Each specialist will focus on their preferred organ, tissue
types and cell types.

Main Medical Modeling Map

[0353] The individualized medical modeling system archi-
tecture consists of thirteen levels delineating diagnostic,
prognostic, therapeutic and general medical types. Within
the IMM modeling typology described in the thirteen levels
are several layers within each level. These layers further
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describe detailed components of the categories—precise and
varied biological ontological object references—in each
level that represent a differentiated grouping of biomedical
objects, events, systems, predictions or therapies. Please
refer to the table in FIG. 1 for a consolidated description of
the IMM architecture. In addition to disclosing the main
categories of the IMM system, the architecture describes a
set of Al technologies that are applied to the categories of
each level. The table in FIG. 1 shows these Al technology
applications to the various biological entities and systems.

Level 1: General Patient Model

[0354] Level 1 of the individualized medical model
(IMM) architecture refers to the general patient model. This
level consists of MM categories in six layers. Layer 1 refers
medical research article and biomedical library data search
and analysis MMs. Vast databases of biological and medical
libraries, including medical research articles and biodata
consisting of DNA, RNA, protein, cell and disease data, are
available for search and analysis by researchers. These data
on generic medical information are available in MMs. The
MM models apply LLMs and NLP to summarize the medi-
cal articles and biological data for use by clinicians and
researchers.

[0355] Layer 2 consists of doctor observations of patient
and notes data that are imported into MMs. Most medical
doctors use electronic medical records (EMR) in order to
track information about patients. These direct physician
medical notations about patient visits, tests and events are
recorded in EMR and input into MMs. This layer also
includes the integrated health record platform. The MMs
apply LLMs and NLP to summarize the patient medical
records.

[0356] Layer 3 consists of electronic health record (EHR)
data inputs, aggregation and analytics MMs. The EHR
records include multiple EMR records from at least one
physician that are aggregated into the IMMs. These EHR
records are useful by feeding specific patient medical infor-
mation into MMs. The MMs apply LLMs and NLP to
summarize, organize and manage the patient medical
records. This layer also includes the integrated health record
platform.

[0357] Layer 4 consists of patient history and hereditary
data input into MMs. The patient history is useful to provide
a background to the present patient medical events. The
patient hereditary data is useful to supply medical data that
may explain a patient medical situation. These historical and
hereditary data supply critical explanatory data for under-
standing the context for some chronic diseases.

[0358] Layer 5 consists of MMs on patient medical tests,
including blood, urine, spinal fluid, body fluid and tissue
tests. Since collecting and analyzing blood and fluid tests are
common, these data should be easily accessible. The analy-
sis of these tests is supplied to the IMMs in order to show
the present condition of a patient. In most cases these data
supply a baseline reference for the MMs, while in other
cases some data are identified that suggest a unique abnor-
mality that may require further testing and analysis.

[0359] Layer 6 consists of Epigenetic MMs #1. In this
case, epigenetics refers to an analysis of environmental
factors of biology. Further, this layer includes chemical
poison MMs that illustrate external environmental chemical
pathogens that have an adverse reaction on a patient. An
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example of an environmental factor of disease generation
may be a patient smoking cigarettes or being exposed to a
toxin.

Level 2: Diagnostics, Bioinformatics, Organ and Body
System Analyses

[0360] Level 2 consists of seven layers that address MMs
showing diagnostics, anatomy, physiology and bioinformat-
ics of patient biological data including imaging data, body
system data, electrical system data and organ data.

[0361] Layer 1 consists of MMs that collect, analyze and
manage patient biological data, including genomic, pro-
teomic, multiomic, metabolomic and cell biomarker data.
GenAl, LLMs, NLP, GANs and GDL may be applied to
analyze these patient biological data.

[0362] Layer 2 consists of diagnostic imaging data input
into MMs. These imaging data types include X-rays, MRI,
CT, ultrasound, mammography, PET, SPECT and so forth.
In addition, imaging biomarkers data are recorded in these
MMs. GenAl, LLMs, NLP, GANs and GDL may be applied
to analyze these patient diagnostic imaging data.

[0363] Layer 3 consists of body system MMs. These
include MMs that collect information on, and analyze,
patient data on the cardiovascular system, neuro- and ner-
vous system, pulmonary system, muscular-skeletal system,
respiratory system, gastro-intestinal system, reproductive
system, immune system, lymph system, endocrine system
and so on. GenAl, LLMs, NLP, GANs and GDL may be
applied to analyze these patient body systems data.

[0364] Layer 4 consists of electrical systems analysis in
MMs. MMs of brain, nervous and autonomic system elec-
trical activity are analyzed on this layer. In addition, MMs of
cardiovascular system electrical activity are analyzed on this
layer. Further, medical devices related to body electrical
systems, such as pacemakers or defibrillators are addressed
in this layer. Implantable brain stimulation devices (neural
implants) are also addressed in this layer. This layer also
deals with digital biomarkers, including sensor-derived elec-
trical or temporal data on cardiac or brain activity or
condition. GenAl, LLMs, NLP, GANs and GDL may be
applied to analyze these patient electrical systems data.
[0365] Layer 5 consists of MMs that examine organ and
tissue data including patient data on brain, heart, lungs, liver,
pancreas, kidneys, glands, reproductive organs, skin, eyes,
etc. This layer also deals with MMs that examine tissue
consisting of clusters of cells in, and connective tissue
between, the organs and body systems. This layer also deals
with physiology MMs that deals with operational mechanics
of organs and tissue. GenAl, LLMs, NLP, GANs and GDL
may be applied to analyze these patient organs and tissue
data.

[0366] Layer 6 consists of MMs that address medical
devices, including medical devices in body systems. MMs
that deal with medical devices draw on modeling software
techniques from industrial design to configure the anatomy
and mechanics of medical devices. These medical devices
may be implantable devices or external devices. As the
internet of things (IoT) presents intelligent devices that
include sensors, intelligent circuits and communications
components, these IoT devices are increasingly integrated
into medical technologies that interface with medical
patients. These medical devices track, analyze and manage
patient diseases, activities for which IMMs are well suited to
analyze and organize. For implantable devices, MMs are

Oct. 16, 2025

well suited to model, track and manage data for these
devices. Layer 6 is also useful for modeling, tracking and
managing artificial organs. GenAl, LLMs, NLP, GANs and
GDL may be applied to analyze these patient medical device
and artificial organ data.

[0367] Layer 7 consists of surgical MMs. Surgeons use
MMs for understanding each patient’s unique surgical
requirements. For instance, an orthopedic surgeon may use
MDMs to analyze a patient’s diagnostic imaging information
on a knee prior to knee replacement surgery. The precise
contours and configuration of a patient’s unique artificial
knee are constructed by applying the patient IMMs. GenAl,
LLMs, NLP, GANs and GDL may be applied to analyze
these patient surgical data. Surgical procedures are analyzed
prior to intervention by applying the MMs. The mechanics
of the surgical procedures can be emulated by applying
simulations of projected surgeries. In an embodiment of the
invention, a surgical MM can be combined with a virtual
reality or an augmented reality program in order to enable a
surgeon to study a patient’s surgical procedure to prepare for
the actual event. In another embodiment, the MMs can be
useful during a surgical procedure by advising the surgeon
of potential procedural steps at different stages in order to
optimize a surgical solution. GenAl, LLMs, NLP, GANs and
GDL may be applied to analyze these surgical MMs.

Level 3: Molecular and Cellular Description and Analyses

[0368] Level 3 consists of seven layers that address MMs
illustrating cellular and molecular elements of medicine.
[0369] Layer 1 consists of MMs delineating DNA, chro-
mosome, SNPs, coding genes and non-coding genes data,
collectively embraced in genomics. The models describe a
map of chromosomes with specific coding and non-coding
genes as represented by unique addresses and zip codes.
[0370] In addition to genomic data, layer 1 also features
MMs of embryonic development. Thousands of genes are
utilized in the embryonic process that are emulated and
analyzed in model representations of fetal growth.

[0371] Layer 2 consists of MMs of coding and non-coding
RNA and describes transcription processes from DNA to
RNA. Coding and non-coding DNA are transcribed into
coding and non-coding RNA, the processes of which are
illuminated in MMs. This layer examines MMs of multi-
omics from DNA to RNA and to proteins. In addition, this
layer describes general cell biology anatomy and dynamics.
[0372] Layer 3 consists of MMs of protein and peptide
MMs. The translation from RNA of amino acids into pep-
tides and proteins are described. This layer examines MMs
of proteomics.

[0373] Layer 4 consists of MMs showing 3D and 4D cell
architecture, including model representations nucleus, mito-
chondria, ribosomes, lysosomes and so on. This layer fea-
tures molecular interactomics.

[0374] Layer 5 consists of MMs of 3D and 4D cell
dynamics, including model representations of physiology of
cell types including neuron, blood, muscle, stem cells,
immune cells and so on. This layer features cellular inter-
action MMs as well.

[0375] Layer 6 consists of multicellular network MMs.
This layer features descriptions of tissues, cellular network
interactions and intercellular communications.

[0376] Layer 7 consists of MMs and simulations showing
pathogens, vaccines and the immune system. This layer also
features MMs of biologics.
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[0377] Level 3 features GenAl, LLM, NLP, VAEs, GAEs,
GNNs and GDL categories of Al applied to molecular and
cellular descriptions of objects, events and systems.

Level 4: Structural Genetic Variant Combination Pathology
Identification

[0378] Level 4 describes the sources of pathology in the
form of combinations of structural genetic variants. Since
many diseases develop from mutated genes, the combination
of these gene variants presents as aggregations of dysfunc-
tional protein structures and pathways. This level develops
models that transcend traditional protein folding models
because we are concerned here with mutated genes and
abnormal proteins that are generated from the gene variants.
In fact, models at this layer are compared to optimized
reference protein structure models in order to best describe
the genesis of pathologies.

[0379] Layer 1 consists of MMs of mutated and variant
genes and single nucleotide polymorphisms (SNPs). Each
SNP represents a variation in a single DNA nucleotide. As
an example, a gene may replace guanine with adenine,
creating an error in the DNA segment. If SNPs occur in one
in every 1,000 nucleotides, there are about four million
SNPs in each individual’s genome, including non-coding
genes. When SNPs are integrated in coding genes, they may
play a role in diseases because they may generate abnormal
proteins; when SNPs are located between genes, that is, in
the non-coding regions of a chromosome, they may be
useful as markers of genes that may generate disease. Since
SNPs may be inherited, they may be useful to tracking
inherited genes.

[0380] Layer 2 consists of MMs of dysfunctional proteins
and peptide structures. This layer is also useful for gener-
ating MMs for protein structure prediction. Specifically, this
layer includes MMs that describe a particular patient’s
dysfunctional 3D protein structures. These dysfunctional
protein structures are compared to reference libraries of 3D
protein structures in order to reveal protein folding and
structural abnormalities that are inherent in a specific
patient’s disease.

[0381] Layer 3 consists of MMs of DNA, RNA, protein,
lipid and small molecule biomarker MMs. Biomarkers—
literally biological markers—represent biomolecular infor-
mation that can be used to identify, predict, validate and
monitor a disease. Gene, RNA and protein biomarkers are
structural biochemical components that are useful in iden-
tifying the presence of a biomedical dysfunction. Lipid and
small molecule (metabolomic) biomarkers represent addi-
tional biochemical components that supply information on
the presence of a disease. Biomarkers are also useful to
identify the reaction of drugs, to predict the progress of a
disease or to predict a response to a drug therapy. Layer 3
also contains MMs of liquid biopsies for cancer detection.
[0382] Layer 4 consists of MMs delineating the cellular
manifestation of dysfunctional DNA, RNA, proteins and
peptides. While mutated gene and RNA sequences present as
abnormal 3D protein and peptide structures, their represen-
tation can be shown in the context of a living cell. These
MMs show the operation of abnormal proteins in protein
pathways. In addition, this layer contains MMs that show
tumor tests. Tumors manifest a combination of multiple
gene mutations, which are described in models.

[0383] Layer 5 delineates in silico laboratory in which
MM s can be used to elaborate experiments of dysfunctional
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genes, RNA and proteins. In silico laboratory experiments of
gene and RNA variants and abnormal proteins enable the
MMs to computationally apply hypotheses to test assump-
tions and to provide predictions of aspects of abnormal
genomic and proteomic data.

[0384] Layer 6 describes epigenetics MMs, specifically,
models showing mechanisms of gene expression regulation.
In addition, this layer shows allergy MMs. Finally, this layer
describes animal and pre-clinal trial MMs.

[0385] Level 4 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, GANs, VAFs,
GAEs, MVNs and GDL.

Level 5: Functional Molecular and Cellular Pathology
Diagnoses

[0386] While level 4 is concerned with MMs describing
structural biomolecular phenomena, level 5 consists of MMs
that describe functional molecular and cellular phenomena
that lie at the root of pathologies.

[0387] Layer 1 contains functional (dynamic) models of
dysfunctional coding and non-coding genes, SNPs and cod-
ing and non-coding RNA. In addition to delineating 3D
structures of dysfunctional genes and RNA, this layer also
describes 4D processes of transcription of DNA to RNA.

[0388] Layer 2 consists of MMs of dysfunctional protein
and peptide functions, including dysfunctional protein func-
tion prediction MMs. This layer shows MMs that describe
the functional operation of the process of translation from
RNA to abnormal proteins and peptides.

[0389] Layer 3 consists of MMs describing protein path-
way mapping MMs. In this layer are descriptions of how and
why disease operates, including the interactions of abnormal
proteins with both normal proteins, lipids and small mol-
ecules as well as abnormal proteins, lipids and small mol-
ecules. In one embodiment, this layer shows MMs that
compare abnormal protein pathway and interaction opera-
tion with normal protein pathways and operations.

[0390] Layer 4 consists of MMs showing protein-protein,
protein-ligand and protein-lipid interactions, including both
functional and dysfunctional protein configurations. This
layer also shows drug-target and drug-disease interaction
prediction MMs. Dysfunctional proteins are targets of drugs,
the interactions of which MMs are useful for describing;
MMs are also used to predict abnormal protein interactions
with drug candidates. Similarly, multiple dysfunctional pro-
teins that represent disease are mapped in MMs as they
interact with drugs; drug candidate behavior is predicted in
MMs as the drug candidates interact with multiple abnormal
proteins.

[0391] Layer 5 consists of MMs showing cellular machin-
ery dysfunctions. Since proteins operate as the molecular
machinery of cells, abnormal proteins are described by MMs
in the context of cellular mechanics. In addition to intrac-
ellular cellular machinery dysfunctional operation, MMs are
useful in this layer to show dysfunctional intercellular
operations, including cell signaling and intercellular com-
munications. Cancer biopsies are also modeled in layer 5.
Since tumors represent the manifestation of multiple dys-
functional genes and abnormal proteins, cancer biopsies can
be modeled at layer 5.

[0392] Layer 6 consists of MMs showing an in-silico
laboratory in which MMs describe experiments involving
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dysfunctional genes, RNA, proteins and cells. In addition,
auto-immune and regulatory T-cell (Treg) MMs are modeled
at this layer.

[0393] Level 5 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, GANs, VAEs,
GAEs, MVNs, GATs, GDL and GCNN.

Level 6: Diagnostic Prognostic Simulations

[0394] Level 6 delineates MMs showing the progress of
disease without intervention. Diagnostic prognosis MMs
show actual disease progress as well as predictions of
disease progress over time.

[0395] Layer 1 consists of MMs analyzing general patient
pathology progression (pathogenesis). Bayesian analyses
are applied to pathology prognostics in this layer to assess
patient pathology progression scenario probabilities.
[0396] Layer 2 consists of MMs that represent 4D simu-
lation scenario prediction of pathology evolution without
therapy. In a sense, these MMs represent a control aspect of
a patient’s disease progress without treating the disease.
Also in this layer are MMs on the control arm of drug
clinical trials in order to show patients’ pathology progress
without treatment.

[0397] Layer 3 consists of MMs to identify novel bio-
marker(s) via analysis of the precise phases of disease
progress. As a patient’s disease evolves, different biomark-
ers are generated at different phases of the pathology pro-
gression. These differentiated biomarkers represent unique
guideposts that point to the specific points of change in the
evolution of the patient’s disease. Imaging biomarker MMs
are also found at this layer. As a patient’s pathology pro-
gresses, these imaging data represent key guideposts for
identifying the phases of the evolution of the disease. As an
example, the imaging biomarkers identified in the multi-
phasal development of some solid tumors represents a
diagnostic prognostics tool.

[0398] Layer 4 consists of MMs of models depicting
patient-environment interactions as a source of pathology.
For example, an MM can track a patient’s excessive eating,
drinking and smoking as a source of disease. This layer also
includes MMs to track patient-environment pathology pro-
gression. As an example, if a patient contracts lung cancer
but maintains smoking cigarettes, the progression of the
disease may be different than if the patient quits smoking.
[0399] Layer 5 consists of epigenetics MMs. These MMs
analyze epigenetic patterns and networks to ID pathology
characteristics and progression. For example, some diseases
involve a complex interchange between a patient and her
environment; some food allergies may generate from eating
(or not eating) foods at different times in childhood.
[0400] Layer 6 consists of preemptive medicine MMs.
These MMs predict or forecast future potential or probable
pathology progression. An assessment of biomarkers for
cardiovascular disease risk may result in recognition of
future probable onset of the disease that is highly predict-
able.

[0401] Level 6 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, GANs, RBMs,
GDL, GNNs, GATs and GAEs.

Level 7: General Therapy Solutions

[0402] MMs are shown for general therapies that may
already be known and tested. Once a diagnosis of a disease
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is made, the first step is to identify general therapeutic
solutions of existing drug therapies.

[0403] Layer 1 consists of MMs for summarizing and
analyzing medical research and clinal trial studies. The
accumulated sum of prior medical research articles supplies
a robust knowledge pool for physicians to use to identify and
solve clinical medical challenges.

[0404] Layer 2 consists of MMs that include general
therapy recommendations of general diagnostic summaries.
These general therapy suggestions refer to existing remedies
that are likely to solve specific disease diagnoses.

[0405] Layer 3 consists of MMs that rank and select
existing drug options to fit disease diagnoses.

[0406] Layer 4 consists of MMs for the identification of
existing drug(s) for unique patient pathologies. Whereas
prior layers suggest a common disease type, this layer
focuses on identifying an existing drug therapy for a novel
patient disease.

[0407] Layer 5 consists of MMs exploring, evaluating and
predicting the precise dose, side effects, timing, toxicity and
interactions of drugs for a patient.

[0408] Layer 6 consists of MMs showing options for drug
delivery vehicles, including nanoparticles, lipids and
viruses. In addition, this layer includes MMs showing appli-
cations of chemotherapy and radiation as therapeutics.
[0409] Level 7 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, RBMs, VAEs and
GAE:s.

Level 8: Unique Therapy Solution Genesis

[0410] Many diseases have a genetic source. In some
cases, genetic mutations generate abnormal proteins that
cause a disease. In other cases, epigenetic expression creates
abnormal proteins, lipids or small molecules that cause
disease. Most chronic diseases, from cardiovascular disease
to neuro-degenerative diseases to cancer and autoimmune
diseases have genetic or epigenetic sources. In these cases,
it is essential to precisely diagnose a patient’s pathology.
However, once the molecular mechanisms of a disease are
identified, it is clear that a uniquely tailored drug or therapy
may be required to cure or manage the disease. The mod-
eling categories of level 8 are intended to identify and select
unique therapy solutions.

[0411] Layer 1 consists of MMs to identify precise pathol-
ogy diagnosis and gene and protein sources of a patient’s
disease, which are critical preparatory data in order to
prepare to address a patient’s disease. MMs to identify drug
targets are also included in layer 1.

[0412] Layer 2 consists of in silico laboratory MMs to
discover novel drugs. In this layer, MMs are configured to
conduct experiments to discover novel drugs. The in silico
laboratory is configured to test, rank and select different
chemical compounds that may comport to a specific drug
target.

[0413] Layer 3 consists of MMs of RNA, peptide and
protein (drug) novel design to solve a unique pathology.
MMs are configured to apply GenAl techniques in order to
generate novel synthetic drugs in order to fit a particular
dysfunctional protein. In addition, antibody-antigen MMs
are included in this layer.

[0414] Layer 4 consists of MMs for large and small
molecule novel design for a unique pathology. In addition,
antibody/ADC radioconjugate novel drugs for unique
pathology are included at this layer. Enzyme (protein or
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RNA) novel designs for unique pathology are included at
this layer. Finally, stem cell MMs are included at this layer.
[0415] Layer 5 consists of MMs for gene, RNA, non-
coding DNA and non-coding RNA editing. CRISPR-Cas9,
CRISPR-Cas12, CRISPR-Casl3 (gene silencing) and pro-
grammable RNA/DNAMMs are included at this layer. Pre-
clinical trials and drug prediction MMs are also included at
this layer.

[0416] Layer 6 consists of MMs illustrating cellular pro-
gramming and reprogramming therapy. In addition, immune
system therapy MMs are featured at this layer. For example,
CAR T cell therapy MMs are included. Finally, endocrine
therapy MMs are included at this layer.

[0417] Level 8 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, GANs, VAEs,
GAEs, MVNs, RBMs, GDL, GCNN and PDE.

Level 9: Therapy Option Testing and Simulations

[0418] Level 9 features testing and simulations of various
therapy options, from chemical to biochemical and biologic.
[0419] Layer 1 consists of MMs for RNA, peptide, pro-
tein, antibody and enzyme novel drug simulations and
scenarios.

[0420] Layer 2 consists of MMs of cellular mechanics,
protein interactions and protein pathways.

[0421] Layer 3 consists of MMs of in silico laboratory
MMs for experiments of optimal therapy options. In some
cases, the MMs evaluate various therapy options, rank the
options and select the optimal therapeutic option for a
specific set of conditions.

[0422] Layer 4 consists of MMs for drug-target and drug-
disease interaction simulations.

[0423] Layer 5 consists of MMs illustrating clinical trials
in order to compare or predict a control group to a pathology
therapy group.

[0424] Layer 6 consists of MMs showing optimal proba-
bilistic therapy selection MMs. These MMs describe precise
therapy (drug) prediction and targeting.

[0425] Level 9 applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, VAEs, GAEs,
MVNs, RBMs, GATs, GDL and PDE.

Level 10: Therapy Prediction Scenarios

[0426] Diagnostic prognostics include predictions made
after a disease is identified and tracked without therapeutic
intervention. When a disease is treated, on the other hand,
with a drug, changes in the disease evolution can be tracked
with therapeutic prognostics. The disease scenarios with
treatment (pharmacodynamics) are compared to disease
(prediction) scenarios without treatment in order to assess
the effectiveness of a drug or therapeutic regimen.

[0427] Layer 1 consists of MMs of disease progression
probabilities with different drug therapy options. In addition,
this layer includes MMs of drug-target interaction prediction
scenarios.

[0428] Layer 2 consists of MMs for 4D simulation sce-
narios of disease progression with drug therapy option
feedback. This layer includes MMs of drug reaction predic-
tions.

[0429] Layer 3 consists of MMs for comparing pathology
diagnostic prognostic simulations to therapy option prog-
nostic simulations.

Oct. 16, 2025

[0430] Layer 4 consists of MMs of clinical trials for
patient cluster drug testing. These clinical trials tailor drug
testing to include a focus on pathologies in which patients
share specific genetic, RNA or protein biomarkers of spe-
cific diseases. In addition, this layer includes MMs to predict
therapy responses from biomarkers. MMs in this layer also
address multiomics for drug prediction.

[0431] Layer 5 consists of MMs for epigenetics in which
epigenetic biomarkers are identified to predict clinical
responses to medical interventions.

[0432] Layer 6 consists of MMs for preemptive medicine
in which the MMs are configured to predict or forecast
potential or probable pathology progression with therapy
feedback.

[0433] Level 10 applies Al technologies to the categories
in its layers, including GenAl, LLMs, NLP, RBMs, GNNs,
GATs, GCNs, MVNs and PDE.

Level 11: Unified Patient Model

[0434] In this level, the various levels are united into an
integrated patient MM.

[0435] Layer 1 consists of MMs that view a patient as a
medical library of individual health events.

[0436] Layer 2 consists of MMs that integrate diagnostics
model levels.
[0437] Layer 3 consists of MMs that integrate therapeutics
model levels.
[0438] Layer 4 consists of MMs that integrate prognostics
model levels.
[0439] Layer 5 consists of MMs that integrate surgical

elements from other levels.

[0440] Layer 6 consists of MMs applied to human lon-
gevity analyses, including cardiovascular disease, neurode-
generative diseases, cancer and metabolic diseases.

[0441] Level 11 applies Al technologies to the categories
in its layers, including GenAl, LLMs and NLP.

Level 12: Human Population Model

[0442] This level is useful for addressing public health and
epidemiological models as well as models involves aspects
of hospital system management.

[0443] Layer 1 consists of MMs modeling a patient’s
family and hereditary data.

[0444] Layer 2 consists of MMs of epidemiology clusters
and MMs of infectious diseases.

[0445] Layer 3 consists of MMs for public health data
analysis. This layer includes preventive medicine MMs.
[0446] Layer 4 consists of MMs featuring clinical trials
that classify large patient populations.

[0447] Layer 5 consists of MMs of trauma medicine
detailing simulations of emergency events. This layer also
features MMs showing interactions between patients and
medical devices.

[0448] Layer 6 consists of MMs of hospital architecture,
logistics and management. This layer develops models to
optimize the structure and function of hospitals and clinics.
[0449] Level 12 applies Al technologies to the categories
in its layers, including GenAl, LLMs and NLP.

Level @: Master Individualized Medical Model

[0450] Level @ unifies different elements of the MMs to
create aggregated reference models.
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[0451] Layer 1 consists of molecular data MMs in which
DNA, RNA and protein data are aggregated and analyzed.
[0452] Layer 2 consists of MMs modeling cell, organ,
tissue and biosystem data in which these data types are
aggregated and analyzed.

[0453] Layer 3 consists of MMs of aggregated pathology
diagnosis and prognostics data and analyses.

[0454] Layer 4 consists of MMs of aggregated pathology
therapeutics, prognostics and clinical testing data and analy-
sis.

[0455] Layer 5 consists of MMs of an Atlas of Integrated
Human Medical modeling. This layer includes MMs of
aggregated medical data that can be used as a reference.
[0456] Layer 6 consists of models that share data from the
Master MMs with patient MMs. This layer also includes
models of patient synthetic data.

[0457] Whereas many of the Levels and categories are
configured to analyze specialized biomedical problems,
Level @ is unique in its ability to compare actual patient
pathologies to a model-generated optimal patient scenario in
which the patient’s best possible health—without addic-
tions, unhealthy habits, lack-of-exercise, etc.—can be
described, along with best-case prognostics under conditions
contingent on the patient maintaining excellent health. The
optimized version of the patient can be used as an idealized
possible reference scenario.

[0458] Level @ applies Al technologies to the categories in
its layers, including GenAl, LLMs, NLP, GANs, VAEs,
GAEs, RBMs and GDL.

Functional Dynamics Between MM Categories

[0459] Different levels in the IMM architecture system
interact. First, diagnostic levels exchange data between
molecular, cellular, organ, tissue and body system catego-
ries. Molecular and cellular categories exchange data, i.e.,
Level 3 layers 1-3 may exchange data with Level 3 layers 4
and 5. Layers on each level can exchange data in order to
complete MMs on each respective level.

Level 3 layers exchange data with Level 4 layers. Similarly,
Level 4 layers share data with Level 5 layers.

[0460] Diagnostic Levels 1 and 2 share data with each
other. Levels 1 and 2 share data with diagnostic Levels 3-5
and with diagnostic prognostic Level 6 and therapeutic
prognostic Level 10.

[0461] Diagnostic Levels 3-5 share data with diagnostic
prognostics Level 6.

[0462] Therapeutics Levels 7, 8 and 9 share data as well.
Levels 7 and 8 share data with Level 9.

[0463] Therapeutics Levels 7-9 share data with therapeu-
tic prognostics Level 10.

Levels 1-10 share data with Level 11 as well as with Level
Q.

[0464] The sharing of data between MM categories
enables the IMM system to solve complex problems by
gathering more precise information about a patient’s precise
diagnosis and therapeutic options from various biological or
biochemical data sources.

[0465] As an example of the data exchange between
categories on the same or on different levels, an MM can
build simulations on different scales, that is, between
molecular scales, cellular scales and tissue, organ and bio-
logical system scales. This approach enables the IMM
system to process different dimensions of biomedical dis-
covery simultaneously.
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[0466] In another example, while diagnostics level models
may generally be developed before therapeutic level models,
the system may develop interactive dynamics between these
diagnostics and therapeutics categories in order to generate
complementary models simultaneously. For instance, an
early diagnostic model may lead to an initial Level 7
therapeutic model, while feedback from this treatment rec-
ommendation may lead to deeper analysis of MMs in
diagnostics Levels 4 and 5, which then lead to analysis of
MMs of therapeutics Level 8 and therapeutic prognostics
Level 10. These models may be interactive and iterative.
[0467] Inanembodiment of the invention, software agents
(PHAs) facilitate the exchange of data between MM cat-
egories and between MM layers on the same level and
between levels.

[0468] In another embodiment, the software agents can
simultaneously process data exchanges between two or more
MM categories between MM layers on the same level and
between levels.

[0469] The simultaneous processing of multiple MMs
resembles the multiprocessing of multiple microprocessor or
system-on-chip cores. The multiple simultaneous processing
of two or more MMs or simulations enable solving multiple
biological problems at the same time.

[0470] As more information is gathered in early diagnostic
Levels, the data are able to complete complex diagnostic
MMs that precisely identify a pathology source. From this
realization of a disease cause, therapeutic model MMs can
develop drug therapy candidates to target specific abnormal
genes or proteins.

[0471] In a sense, the categories in layers of some levels
represent a reduction from macro biological phenomena (bio
systems and organs) to micro biological phenomena (cells,
proteins and genes).

[0472] Inanembodiment of the invention, software agents
apply application programming interfaces (APIs) to intra-
level and inter-layer MM analyses. The APIs operate to
process data on one or more levels and to connect the levels
together with communications software. In addition, the
APIs can connect layers, layer categories and layer sub-
categories, within levels.

[0473] Since each layer can have its own MMs, numerous
MMs can operate at the same time, sharing data with other
MMs and communicating with other MMs. Data can be
aggregated among two or more categories or layers simul-
taneously. Similarly, data from two or more categories or
layers may be combined together in order to construct two
or more models simultaneously, mainly by sharing data
between the two or more categories or layers. In one
interpretation, models from one or more category can be
conceived as analyzing a specific episode of a patient
phenomenon (molecular, cellular, organ, etc.), while com-
bining data from two or more categories or layers enables
the modeling system to identify complex patterns among the
sequence of events. By combining two or more MMs from
two or more categories, the modeling system can identify the
signal from the noise in order to articulate a long-term
patient health story.

[0474] As an example, one or more software agents can
engage in diagnostic problem solving by activating MMs in
different layers of diagnostic Levels 3-5. Once diagnostics
models are constructed that precisely illustrate a patient’s
disease, the software agents engage in therapeutic problem
solving by activating MMs in different layers of therapeutic
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Levels 7-9. The software agents can activate MMs in the
diagnostic prognostics Level 6 and the therapeutic prognos-
tics Level 10 in order to make predictions about pathology
development with and without drug interventions.

[0475] Note that there are sub-categories in each layer
indicating that there may be hundreds of potential MM
categories available in the IMM system.

[0476] Once the MM category models are activated, with
problems solved in multiple layers, the system will generate
summaries of analyses, options and predictions.

[0477] The software agents may navigate this maze of
MM categories with an aim to streamline the disease dis-
covery and therapy problem solving processes.

[0478] The different categories of MMs focus on different
biomedical phenomena, such as molecular, cellular, organ or
biosystem objects or events. Each category of biomedical
phenomena may require a different class of Al or ML in
order to optimize the descriptive, predictive or prescriptive
capabilities of each category of the IMM system. Different
MMs will select a different particular Al or ML algorithm in
order to apply to different types of biomedical phenomena or
to solve different categories of problems. FEach MM will
match a different Al or ML algorithm or technique from the
AI/ML toolkit in order to apply to the different categories of
biomedical phenomena. When PHAs build MMs, the PHAs
select different Al or ML algorithms (or configure hybrid Al
or ML algorithms) in order to describe biomedical categories
or solve key biomedical category problems. Al and ML tools
can be applied to two or more categories for simultaneous
problem solving.

Mechanics of Individualized Medical Modeling System

[0479] Computer modeling involves processing program
code (software) on computer hardware that consists of logic
and memory circuits. The logic circuits that process com-
puter models consist of multi-core system on chip (SoC)
circuits, graphics processing units (GPUs), tensor circuits,
complex programmable logic devices (CPLDs), field pro-
grammable gate arrays (FPGAs), application specific inte-
grated circuits (ASICs) and neuromorphic circuits. Many of
these circuits are fabricated in specialized integrated circuit
manufacturing facilities in 10 nm, 7 nm, 5 nm, 4 nm, 3 nm,
2 nm and 1.8 nm nodes. While logic circuits have tradition-
ally been configured in planar formats, increasingly these
complex logic circuits are being integrated in three dimen-
sional packages akin to a multi-story building. Intel’s Fove-
ros Direct, Samsung’s SAINT and TSMCs SolC-X and SoW
3D chip packaging technologies represent the cutting edge
of integrated circuit fabrication. Although there are circuits
today consisting of over 200B transistors, these technologies
are projected to produce single circuit packages in the near
future consisting of trillions of transistors.

[0480] In addition to logic circuits, memory circuits are
required for the operation of computer modeling. In the
main, advanced modeling programs require DRAM tech-
nologies that work with complex logic circuits. The most
advanced DRAM technology, high bandwidth memory
(HBM), is stacked in layers in 3D packages. The HBM
packages are bundled with advanced logic circuits, includ-
ing both SoCs and GPUs, to create high performance
computing hardware.

[0481] In recent years, the advanced GPUs from Nvidia
and AMD have powered the large language models consist-
ing of trillions of parameters. These GPUs require many
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HBM memory modules and are typically configured in
clusters of dozens or hundreds of circuits. Much of the
GenAl revolution depends on the performance of these
GPUs to process massive data sets. GPUs are particularly
adept at processing modeling data, for example, for
advanced simulations. While GPUs are a primary tool for
training LLMs, GPUs and FPGAs are often applied to
inference tuning of LLMs. SoCs are involved in all aspects
of the training and inference of LLMs and often work
together with GPUs.

Software for IMMs

[0482] There are number of general LLMs for GenAl
applications. These include OpenAl’s Chat GTP 4 (1.75T
parameters) GTP 4o (200B parameters) and Chat GPT 5
(50T), Meta’s Llama 3 (405B parameters), Anthropic’s
Claude and many others. These LLMs are trained in several
phases. In a preparatory phase, data are collected and input
into the model. In the next phase, the model is trained with
self-supervised learning in which deep learning frameworks
are configured and parameters are defined. In the third
phase, once the data parameters have been cleaned and
refined, the model is trained with supervised learning for
instruction tuning. This phase redistributes parts of the data
for parallel processing in GPUs. In the next phase, the model
is trained in reinforcement learning to encourage positive
conduct and to fine tune the data sets. Finally, once the LLM
has been trained, it must be applied to a particular field with
inference engines. In most cases, the LLMs are tuned with
text for natural language processing. Since the synthetic data
that are generated from the LL.Ms are dependent on data
inputs and training analyses, it is important to have quality
data imported into the models at the outset in order to
support quality data outputs.

[0483] There are a number of significant biological LLMs,
though they rarely feature more than 10B parameters and
more frequently feature a billion parameters or less, sug-
gesting their limits. The main biomedical LLMs include
SciBert, BioBert, BioNLP, BioMegatron, PubMedBERT,
ScholarBERT, DARE, BioGPT and BIoGPT-JSL, Galactica,
BioMistral, MedLM, Meditron, Hippocratic Al, AntGLM-
Med-10B, PaLM-2 and Med-Pal. M-2. BERT, an acronym
for bidirectional encoder representations from transformers,
was introduced in a 2018 article on pre-trained bidirectional
transformers applied to natural language processing, and
utilized in LL.Ms in biology, medicine and data science.

[0484] LLMs have blind spots. First, since it takes months
or years for an LLM to train data before they are prepared
to generate novel data, the data are inherently obsolete. The
larger the model, the greater the data set, the longer the
training period, the more obsolete the data. Second, the data
generated from the LLMs have a high rate of unreliability.
This is typically called the problem of hallucination in which
the LLM generates blatantly false results. Finally, there are
varying degrees of precision, completeness and specializa-
tion in LLMs. If an LLM has trillions of parameters, it is
likely not specialized, while if it has fewer than half a billion
parameters it is likely not providing a complete answer.

[0485] Computer models require database software for
data storage and data management. Database management
systems feature structured and unstructured data. Database
types include relational databases and object-relational data-
bases. In particular, LLMs can work with SQL databases for
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managing and querying relational databases. Major data-
bases are produced by IBM, Microsoft, Oracle and open-
source companies.

[0486] In order to solve problems of LLM data obsoles-
cence, vector databases are increasingly used for advanced
LLMs. Encoded data are embedded into vectors. Storing
data in vectors allows capturing meanings and context of
similar data. Vector databases store, manage and search
embedded vectors in order to optimize retrieval of familiar
or relevant data in similarity searches, thereby accelerating
processing efficiency. Vector databases are useful for pro-
cessing data updates in LLMs, like a patch that supplements
the original, aged, data sets. Consequently, vector databases
are faster and more responsive than traditional relational
databases. Vector databases work with retrieval augmented
generation (RAG) approaches to apply contextual informa-
tion to data processing in LLMs. While vector databases
supply an alternative to traditional relational databases, their
application is specialized.

[0487] Another advanced database type that is applied to
machine learning is three-dimensional (3D) databases or
multi-dimensional databases. In addition to the typical two
X and Y dimensions of a relational database that stores data
in tables, a three-dimensional database stores data in tables
with the three dimensions of X, Y and Z. Data are stored by
attribute. 3D databases may require a longer set-up period,
but typically process data faster, while it is also easier to tune
than on a traditional relational database. Consequently, 3D
databases are optimized for data with complex object attri-
butes. Additional dimensions can be theoretically developed
in advanced multi-dimensional databases.

[0488] Application program interfaces (APIs) are software
programs that act as a connective tissue that link computa-
tional elements. APIs are a set of rules or protocols to allow
software apps to communicate or exchange data. APIs
enable only the exchange of essential data between separate
apps so as to maximize network efficiency and security. For
example, APIs may be applied to IMM system categories in
which each category represents a model application. In one
case, intra-level MM categories can communicate with each
other via APIs, which represent a sort of short-cut to share
data or supply a particular analysis. Similarly, inter-level
MM categories can communicate with each other via APIs
in order to share data or institute a particular analysis. In this
sense, APIs are a sort of enzyme for MM inter-category
communication and operation that supplies an accelerated
short-cut for processing data within, or between, specified
categories. In addition to interfacing with MM categories,
APIs interface with software agents, databases, LLMs, elec-
tronic medical records, electronic health records, integrated
health records and patient relationship management soft-
ware.

[0489] In an embodiment of the invention, computer mod-
els can be operated, accessed and activated with voice
control. For instance, some functions of model building can
be operated via voice activation or speech recognition.
[0490] Computer models process data in one or more
computer platforms. These platforms include desktop and
laptop computers, smart phones, edge (tablet) computers,
workstations, cloud data centers and IoT devices. While
most personal computers, tablet computers and smart
phones include SoC logic circuits, cloud computers include
SoCs, GPUs, FPGAs, ASICs, tensor circuits, neuromorphic
circuits and neural circuits. The desktop/laptop computer
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interaction with cloud computing will likely be a major
paradigm for processing data in computer models.

[0491] Among the major Al programming languages used
by advanced computer modeling programs are Python, C++,
Java (particularly Java Script) and SQL.

[0492] Rosetta and MatlLab provide software program-
ming tools for computer software programs.

[0493] The IMM system involves processing medical data
types. These medical data types include medical diagnostic
imaging data, genomic data, RNA data, proteomics data,
multiomics data, metabolomics data, cellular data, bio-
marker data, patient EHR data, scientific articles literature,
biological data as a translation to text and alphanumeric
data. The data sources for MMs include data involving
medical research articles, gene, RNA and protein databases,
personal patient EMR, generalized EHR data, integrated
health record platform data, patient medical tests and bio-
markers, animal and preclinical drug research data and
clinical research data.

Al and ML Applied to IMMs

[0494] On Nov. 30,2022, OpenAl introduced Chat GPT 3,
an event that initiated a revolution in Al technology. While
the subsequent development of generative Al has precipi-
tated phenomenal growth in attention to novel types of
machine learning and neural networks technologies, the
ultimate goals of Al researchers lie in development of
artificial general intelligence (AGI). The application of AGI
to MMs presents interesting opportunities. In particular, the
opportunity exists to build intelligent software agents that
work with physicians and medical researchers as co-pilots in
order to work together to build models to solve patient
pathology problems.

[0495] Al is applied to MMs. In particular, machine learn-
ing (ML) and deep learning (DL) are applied to model
building and to analytics and simulations. Generative Al
(GenAl) is a component of ML. GenAl includes numerous
categories of technologies that are applicable to MMs,
including generative adversarial networks (GANs), varia-
tional autoencoders (VAEs), autoregressive models, recur-
rent neural networks (RNNs), transformer-based models,
reinforcement learning, diffusion models, flow models and
neural radiance fields. Within GenAl, several algorithms are
applicable to MMs, including SGD, Adam, AdaGrad, grid
search and Bayesian optimization. GenAl applies to multi-
modal data, including text, images and sound. For example,
image-based GenAl is applied to diagnostic imaging analy-
sis and to building organ MMs.

ML Applied to IMMs

[0496] Machine learning is afield of artificial intelligence
that studies the application of probabilistic algorithms that
learn to generalize from data. ML applies probabilities and
statistics to data analysis to make predictions and perform
computer functions without pre-determined training. It per-
forms these tasks by creating its own rules or criteria for data
analysis and pattern recognition. As it learns from more data,
new data sets in an ML model enables better results;
consequently, updating data leads to adaptation and
improved predictions. ML models can generalize from train-
ing data to unseen data and can make forecasts based on data
they have not seen (but extrapolate).



US 2025/0322963 Al

[0497] ML models are well suited for analysis of medical
data. For instance, ML models are applied to medical
diagnostics since they can identify and analyze a medical
pathology. ML, models are well suited to diagnostic prog-
nostics as well since they provide predictions of disease
progress. ML models also identify solutions to medical
problems, providing therapeutic candidates to treat a dis-
ease.

[0498] Deep learning (DL) is a branch of machine learning
referring to learning with utilization of neural networks.
Learning can be supervised, unsupervised or semi-super-
vised. DL systems include recurrent neural networks, con-
volutional neural networks and transformers. Early neural
networks were modeled on the human brain, but are now far
more advanced. Generally, neural networks are configured
with multiple layers. The “deep” part of DL refers to the
large number of layers in a NN in which data are processed.
[0499] The present system applies geometric deep learn-
ing (GDL) for analysis and description of biomedical
objects, systems and events. GDL consists of a set of
techniques for modeling biomedical phenomena that are
discussed below.

GenAl Applied to IMMs

[0500] Generative Al (GenAl) refers to Al technologies
capable of generating text, images, sound or video in gen-
erative models. These models create novel data from
prompts by learning from patterns of their training data. In
recent years, large language models (LLMs) have input
massive data sets, such as information on the internet, in
order to train the data with complex Al algorithms. Some
LLMs range from 500M parameters to trillions of param-
eters.

[0501] The field of GenAl consists of numerous specific
types of algorithms with applications to biology and medi-
cine. Generative Adversarial Networks (GANs) uses a gen-
erator NN to develop synthetic data samples and a discrimi-
nator NN to make distinctions between natural and synthetic
samples. GANs can be applied to the design of novel
molecules. For instance, GANs can configure novel protein
and peptide designs.

[0502] Restricted Boltzmann Machines (RBMs) and Con-
ditional RBMs are GenAl models trained on contrastive
divergence and learning algorithms. RBMs are applied to
forecast drug-disease relations, predict drug-target interac-
tions and identify repositioning tasks in drug-disease rela-
tion networks. RBMs are optimized to identify drug repo-
sitioning tasks in drug-disease relation networks.

[0503] Variational Autoencoders (VAEs) are probabilistic
generative models that encode and decode samples in a
search space. VAEs are comprised of two neural networks.
The first neural network is an encoder that maps input data
into a latent search space. The second neural network is a
decoder that reconstructs the original input data from
samples derived from the latent search distribution. The
decoder NN generates a reconstructed sample resembling
the input data. VAEs generate a chemical compound search
space to show compound library diversity. VAEs also iden-
tify gene expression stimulated by a chemical compound
and predict cell states from attributes of compounds. VAEs
can be applied to predicting disease progression and to
production of individualized therapeutics programs.

[0504] Natural Language Processing (NLP) provides an
analysis of structure and content of a language. NLPs supply
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an analysis of “translational” language of amino acids
sequences and relations, a forecast and classification of
drug-target interactions and an identification of chemical
“cell line” interactions. NLP techniques also design de novo
drug compounds that are target specific.

[0505] Large Language Models (LLMs) learn probability
relations between words. LLMs identify relations between
genes, targets and diseases and summarize and analyze
medical and biology research articles.

[0506] Diffusion models learn through a three-part process
of forward, reverse and sampling phases. Diffusion models
are effective in image generation and can generate an image
from text prompts. In biological applications, diffusion
models generate protein structure patterns from gene, RNA
or amino acid sequence data and identify and predict poten-
tial protein-protein interactions from gene, RNA or amino
acid sequence data.

[0507] Generative Pre-trained Transformers (GPTs) are Al
algorithms that operate in an LLM by analyzing text struc-
tures to make predictions. In the biological context, GPTs
make protein structure predictions from pretrained protein
sequence language models. GPTs can also design proteins
with targeted properties.

[0508] Refer to FIG. 2 for a review of GenAl techniques.

[0509] Collectively, these generative Al models are useful
for providing the identification, and forecasting the behav-
ior, of biological entities, such as DNA, RNA, proteins,
peptides and ligands. In addition, these GenAl models are
able to generate novel synthetic protein structures. Whereas
these GenAl techniques have been applied mainly to
describe or predict healthy molecular and cellular interac-
tions, they are also applicable to comparative modeling and
predicting unique patient dysfunctional molecular and cel-
lular phenomena and behaviors that are at the root of
pathologies. Consequently, these GenAl algorithms and
techniques have a role in developing models of individual-
ized patient pathologies as well as in generating novel
solution options, viz., therapeutic solution options for these
unique patient pathologies.

[0510] GenAl techniques are useful for MMs. These Al
techniques have applications to diagnostics, prognostics and
therapeutics. For diagnostics, these techniques identify and
analyze molecular and cellular structures. In the main,
GenAl provides a reference against which to measure bio-
markers in a patient pathology model. For prognostics,
GenAl supplies techniques for prediction of protein and
cellular behaviors that are useful to track a patient’s disease.
For therapeutics, GenAl is applied to identifying and design-
ing novel protein structures that may become a drug candi-
date. In some cases, GenAl may be applied to drug clinical
trials by emulating synthetic patients in a control group.

[0511] But GenAl models have limits too. Their massive
data sets require such a long time to train that they are
virtually obsolete by the time they are activated months and
years later. Also, their data may be prone to hallucinations if
the data are impure or their Al training techniques too broad.
Finally, they tend to be applicable only to optimized bio-
logical structures with algorithms that produce perfected
models of healthy gene, RNA, protein, peptide, ligand, lipid
and cell architectures and interactions. In this sense, these
GenAl models are useful references against which actual
patient pathological medical situations can be measured.
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Geometric Deep Learning (GDL) Applied to IMMs

[0512] Geometric Deep Learning (GDL) refers to a branch
of neural networks (deep learning) that builds models refer-
ring to complex spatial or spatio-temporal objects. GDL
typically uses graphs that consist of nodes, representing an
object, that are connected with edges, which refers to
relationships between object features. GDL is applied to
modeling the structure of molecular entities such as proteins
as well the operation and interaction of molecular networks.
For the most part, the graphs to which molecular phenomena
are mapped are structured two dimensionally with X and Y
axes.

[0513] In the biomedical context, GDL is applied to analy-
sis and prediction of protein structures, to functional analy-
sis and prediction of molecular behaviors, such as protein
interactions, and to the representation and analysis of cell
anatomy and physiology. There are numerous sub-categories
of GDL that refer to separate Al techniques for learning in
the biomedical context; most of these are represented by
different types of graph neural networks.

[0514] Graph Neural Networks (GNNs) analyze protein
structure as graph-structured data. Nodes on a graph pass
messages to neighboring nodes. GNNs extract features from
a graph to predict protein geometry.

[0515] Graph Attention Networks (GATs) apply attention
mechanisms to weight value of different nodes or edges in
a graph. Features are extracted from a graph to predict
protein geometry. GATs are a subclass of GNNs.

[0516] Graph Convolutional Neural Networks (GCNs)
analyze and predict protein properties.

[0517] Molecular entities are represented as a graph, with
atoms as nodes and with chemical bonds as edges. GCNs
map and predict graph structure protein data. GCNs are a
subclass of GNNs.

[0518] Manifold-Valued Neural Networks (MVNs) supply
analyses of non-Euclidean 3D data structure representations
from two dimensional graphs. MVNs supply an analysis of
structural protein features.

[0519] Spherical Convolutional Neural Networks (SCNs)
provide an analysis of global representations of protein
binding sites and differentiates chemical properties of pro-
tein binding sites. SCNs supply protein models represented
as molecular graphs. SCNs are a subclass of MVNs.
[0520] Graphical Autoencoders (GAEs) analyze and pre-
dict protein structures.

[0521] Equivariant Graph of Graphs Neural Networks
(EGGNets) conducts two main classes of protein interaction
analyses, comprising (a) prediction of protein-molecule
binding, including small molecules, synthetic peptides and
proteins and (b) analysis and prediction of drug-target inter-
action networks. Graph of graphs (network of networks)
refers to a graph in which some nodes are graphs.

[0522] Refer to FIG. 2 for a review of GDL techniques.
[0523] The graph neural networks embodied in geometric
deep learning approaches can store data in graph databases,
which organize nodes, edges, properties and relations of
geometric data. GDL models analyze topographic data in
graph databases including molecular surfaces and curvature
aspects of protein phenomena.

[0524] For the most part, GDL techniques are applied to
describe the geometrical properties of objects. In addition,
GDL techniques are applied to predict the geometrical
behaviors of objects.
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[0525] Geometric deep learning techniques are applicable
to MMs. GDL models analyze RNA to protein translation,
protein structures, protein pathway mapping, protein-protein
interactions, protein-ligand interactions, protein-lipid inter-
actions, protein-small molecule interactions and cellular
component mapping. GDL is also useful in modeling
mutated gene and RNA, non-coding DNA and RNA phe-
nomena as well as dysfunctional proteins and peptides. For
instance, GDL techniques identify a dysfunctional compo-
nent of a protein and an optimal geometric configuration of
a protein component; the GDL algorithms then apply prob-
abilities analyses to compare a dysfunctional protein geo-
metric configuration to an optimized protein configuration.
In another example, GDL can predict a gene mutation that
generates an anomalous protein structure configuration and
predict the dysfunctional protein function. Identifying ML
techniques to represent these abnormal genes and dysfunc-
tional proteins supplies MMs the tools to identify unique
patient diagnostics, prognostics and therapeutics.

Generative GDL Applied to IMMs

[0526] Generative GDL techniques refer to NNs with
generative graph learning functions.

[0527] Generative Graph Neural Networks [Generative
GNNs] enables learning by allowing each molecular pattern
to be learned from each step in a process so as to generate
optimal molecular structures. GGNNs generate novel mol-
ecules to accelerate drug design, process graph structured
data to predict drug-target interactions and identify and
forecast drug-drug interaction events.

[0528] Generative Convolutional NNs (GCNNs), a type of
geometrical deep learning technique, generalize a set of
problems to make predictions from prior analyses. GCNNs
make protein structure predictions, protein-protein interac-
tion predictions and protein-ligand interaction predictions.
In addition, GCNNs can design novel synthetic proteins and
drugs.

[0529] Generative GDL algorithms are applied to IMMs
mainly for therapeutics. Generative GDL techniques are
useful for modeling novel synthetic drug designs.

Novel 3D GDL Techniques Applied to IMMs

[0530] While GDL addresses analysis and prediction of
three-dimensional molecular structures by utilizing two
dimensional graphs on the X and Y axes, the limitation of
two dimensional geometrical molecular representations to
analyze three-dimensional objects constrains the traditional
GDL modeling approaches.

[0531] The present invention discloses 3D GDL and fami-
lies of techniques embodying 3D GDL. In general, 3D GDL
provides 3D molecular modeling, analysis and prediction by
applying 3D graph architectures. In addition, 3D GDL
provides 4D molecular modeling, including analysis of
functional protein models with 4D model simulation, 4D
functional analysis of protein-protein interactions, predic-
tion of 4D molecular behaviors, analysis and prediction of
3D cell anatomy models and 4D cell physiology model
simulations. Numerous subclasses of 3D GDL apply specific
techniques to 3D molecular modeling.

[0532] 3D GDL includes a set of techniques that are
applied to 3D electronic graphic displays. Data, particularly,
molecular object data or cellular phenomena data, are placed
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in a 3D matrix graph grid. A 3D matrix architecture is
applied to 3D graph architecture.

[0533] Examples of molecular objects that are described
and analyzed in 3D GDL systems include healthy protein
structures, dysfunctional protein structures, healthy and dys-
functional small peptide structures, small molecules, pro-
tein-protein interactions, protein-lipid interactions and pro-
tein-ligand interactions. Furthermore, functional molecular
objects can be described in 3D GDL simulations, including
healthy and dysfunctional protein dynamics and protein-
protein pathway interaction dynamics.

[0534] 3D Graph Neural Networks (3D-GNNs) embody
3D graphs configured to analyze protein data, featuring
nodes on 3D graphs that pass messages to neighboring nodes
on X, Y and Z axes. 3D-GNNs extract features from 3D
graphs to predict 3D protein, peptide and ligand geometries.
[0535] 3D Graph Attention Networks (3D-GATs) feature
weighted values of nodes and edges in 3D graphs that
represent 3D protein structural attributes. 3D-GATs extract
features from 3D graphs to predict 3D protein geometry.
[0536] 3D Graph Convolutional Neural Networks (3D-
GCNss) analyze and predict 3D molecular entities, such as
proteins, peptides, ligands and lipids represented as a 3D
graph with X, Y and Z axes. 3D GCNs map 3D graph
structured data on protein combinatorial attributes.

[0537] 3D Manifold-Valued Neural Networks (3D-
MVNs) analyze 3D graph representations and predictions of
non-Euclidean 3D protein, peptide and ligand entities and
molecular attributes.

[0538] 3D Spherical Convolutional Neural Networks (3D-
SCNs) apply 3D analysis and prediction of protein and
peptide binding sites. 3D-SCNs differentiate between struc-
tural properties of protein and peptide binding sites. Because
they involve spherical objects, these models apply non-
Euclidean and topological analyses of 3D object features.
[0539] 3D Graphical Autoencoders (3D-GAEs) analyze
and predict 3D protein properties.

[0540] Equivariant 3D Graph of Graphs Neural Networks
(3D-EGGNets) predict protein-molecule binding, including
small molecules, synthetic peptides and proteins in 3D
models and 4D model simulations. 3D-EGGNets analyze
and predict drug-target interaction networks in 4D model
simulations. A 3D graph of graphs refers to multi-dimen-
sional graph wherein some nodes are 3D graphs.

[0541] In general, 3D data sets in 3D graphs are utilized in
3D databases in order to optimize analytical efficiency. 3D
graphs and 3D databases enable increased precision over
models in prior (2D) modelling approaches. This is akin to
representing a snowflake in 3D vs 2D.

[0542] Inone embodiment, 3D data from these models are
analyzed in the 3D databases. 3D object features are ana-
lyzed as key 3D representations of multi-dimensional phe-
nomena. In another embodiment, multi-dimensional data-
bases are applied to 3D GDL models. In still another
embodiment, a 3D model and 3D database can apply (3D)
voxels beyond the typical 2D pixel representation.

[0543] 3D GDL modeling and techniques are useful for
MMs. In the case of 3D protein and cell structures, these
techniques supply enhanced modeling texture by utilizing
3D graphs. 3D models of 3D protein structures, protein
folding prediction from gene and RNA sequence data,
transcription and translation process modeling are optimized
by utilizing 3D GDL. In the case of 4D modeling, 3D GDL
modeling analyze and predict 4D protein function and
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protein-protein interaction events. While these techniques
are useful for modeling 3D structural phenomena and 4D
events of healthy optimized genes, RNA, proteins and
peptides, these techniques are particularly suited for mod-
eling complex model simulations of gene and RNA variants
and dysfunctional protein and peptide structures and opera-
tions.

[0544] The application of 3D GDL models to MMs can be
analogized to a 3D snapshot representation of biomedical
phenomena. Taking this one step further, 3D GDL models
are applied to 4D simulations, which are akin to video
representations of biomedical phenomena. 3D GDL models
are useful for diagnostic, prognostic and therapeutics mod-
eling. In particular, 3D GDL algorithms are applied to
precision diagnostics and therapeutics in order to identify
the properties of protein targets and the attributes of novel
synthetic drug designs.

[0545] Building 4D simulations are a crucial aspect of
understanding complex molecular, cellular and biomedical
phenomena. While the application of 3D GDL to structural
representations of biological objects is useful, describing
object event and object-interaction processes supplies a
useful time series analysis of object behaviors. For instance,
a 4D depiction of a moving picture of phases of a protein’s
or a cell’s operations dramatically assists in understanding
these events.

Novel Generative 3D GDL Techniques Applied to IMMs

[0546] Generative Al is applied to 3D GDL to create novel
advanced models. While GDL, and 3D GDL, models are
primarily descriptive, Gen 3D GDL (3D GenGDL) models
enable synthesis of novel objects. These new techniques
enable these models to design synthetic objects such as new
proteins that do not exist in nature.

[0547] Generative 3D Graph Neural Networks (3D-GG-
NNis) process 3D graph structured data to predict drug-target
interactions in 4D model simulations. These models identify
and forecast drug-drug interaction events in 4D model
simulations as well as drug binding to protein-ligand sites in
3D and 4D models. 3D-GGNNs predict protein-molecule
interactions in 4D model simulations. These models gener-
ate novel synthetic 3D proteins with particular attributes.

[0548] Generative 3D Convolutional Neural Networks
(B3D-GCNNs) make 3D protein structure predictions and
generate novel synthetic 3D proteins with well-defined
properties. In addition, these models predict functional pro-
tein-protein interaction in 4D model simulations as well as
functional protein-ligand interaction in 4D model simula-
tions. 3D-GCNNSs also supply 4D model simulations of cell
physiology processes and of cell networks.

[0549] Generative 3D Graph Attention Networks (3D-
GGATs) analyze weighted values of nodes and edges in 3D
graphs to predict 3D protein attributes. These models extract
features from 3D graphs to predict 3D protein geometry in
4D model simulations. 3D-GGATs also develop 4D model
simulations of 4D cell networks. In addition, these models
generate novel synthetic 3D proteins with identifiable char-
acteristics.

[0550] Generative 3D Manifold Valued Neural Networks
(B3D-GMVNs) develop and analyze 3D graph representa-
tions of non-Euclidean 3D protein structures and attributes.
In addition, these models develop 4D model simulations of
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non-Euclidean protein-protein and protein-ligand interac-
tions. 3D-GMVNss also generate novel synthetic 3D proteins
with unique features.

[0551] Referto FIG. 2 for a review of these generative 3D
GDL techniques.

[0552] These advanced generative 3D GDL modeling
techniques are applied to IMMs. These enhanced (GenAl+
3D GDL) models combine the best elements of GenAl with
the accurate descriptive attributes of 3D graph-based geo-
metric deep learning. In some cases, LLMs are trained with
biomed data in order to supply structured pre-trained data to
3D GDL models. The synthesis of GenAl and 3D GDL
techniques or algorithms enables MMs to generate novel
artificial protein or biologic designs to solve therapeutic
challenges. In addition to developing novel structural
objects, such as novel protein designs, these techniques can
build models to understand the complex interactions of
functional molecular objects. For example, these models can
design novel proteins with specific attributes that solve a
problem of dysfunctional proteins while minimizing non-
target binding and, hence, side effects. In another example,
once a protein target is identified, the models can reverse
engineer a novel solution by inventing a synthetic protein
structure. While the development of Al models for the
prediction of healthy protein structures from healthy DNA
and RNA sequence data are useful as reference simulations,
the combination of GenAl and 3D GDL supplies the tools
for the analysis and prediction of dysfunctional proteins and
peptides, which enables the opportunity to develop opti-
mized therapeutic solutions. The combination of these tech-
nologies in MMs enable the realization of personalized
medicine.

Personal Health Assistants (PHAs) as Multifunctional
Intelligent Software Agents Applied to IMMs.

[0553] PHAs are intelligent software agents that perform
multiple tasks in a computational or network environment.
PHAs are applied in the present invention to IMMs. By
automating many tasks involving modeling for health chal-
lenges, PHAs save time and accelerate the process of finding
solutions to complex medical problems.

[0554] PHAs perform tasks such as data collection, data
management, analytics, Al selection, Al synthesis and com-
munication in a computer network. PHAs operate in a
multi-agent system (MAS) in order to perform tasks, includ-
ing generating specialized agents; PHAs can either cooper-
ate or compete in a network. Applying Al techniques are a
central feature of PHAs as they are related to MMs. These
issues of PHA mechanics are reviewed and novel elements
are articulated.

[0555] PHAs are critical components of a IMM system.
PHAs build models and simulations, perform experiments to
solve diagnostic and therapeutic problems, and make pre-
dictions.

PHA Mechanics

[0556] PHAs search for, collect, analyze, synthesize and
manage data. As such, PHAs interact with database man-
agement systems. PHAs are useful to locate, collect and
package medical data. In the context of IMMs, PHAs collect
and summarize data from medical articles, medical refer-
ence databases and medical and biological LLMs. For
example, PHAs search for, analyze, aggregate, and summa-
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rize medical research data. In some cases, PHAs apply
in-database analytics in order to generate medical research
summaries.

[0557] In addition to general medical information, PHAs
collect data on individual patient medical tests and records,
including EMRs, EHRs and integrated health records
(IHRs). These data sets are useful for enabling PHAs to
build medical MMs on specific patients.

[0558] PHAs are optimized to be personalized to specific
physicians or medical researchers. Consequently, PHAs can
be tailored for specific medical or biological specialties. As
such, these software agents can possess immense informa-
tion on a particular specialized medical field in order to
enable a specialist physician to have the most advanced
research information. For example, cardiologists can have
cardiology-PHAs which possess expertise on cardiovascular
systems. Further, the PHAs can fine-tune their customization
to individual physician practices or medical researchers. In
this sense, PHAs are physician or medical research co-pilots
which can provide general medical information, advice and
predictions to physicians or researchers in real time.
[0559] PHAs are integrated in a multi-agent system
(MAS). Different PHAs have different specializations in
order to promote or optimize different tasks. When a phy-
sician requests information on a particular medical pathol-
ogy, several agents may simultaneously apply their special-
ized skills to gather data, analyze data, summarize data and
provide recommendations. Multiple agents send messages to
each other in order update their programming and task
status.

[0560] Different PHAs have different tools, in particular,
Al tools, to accomplish their computational tasks. For
instance, one category of PHA may be applied to diagnostics
in which they have a specific toolkit optimized for diagnos-
tics, while other categories of PHA may be applied to
therapeutics in which they have a different toolkit optimized
for therapeutics.

[0561] In an embodiment, a main PHA launches many
specialized sub-agents in order to complete computational
tasks. Similarly, many different PHAs can cooperate in order
to achieve a goal, such as finding the source of a disease or
identifying and selecting optimal therapeutic options for a
particular patient.

[0562] Operationally, PHAs integrate Al algorithms into
their program code. These Al algorithms include GenAl
techniques, machine learning techniques and deep learning
techniques. These Al techniques and algorithms enable the
functionality of the PHAs. In addition, Al techniques and
algorithms are applied by the PHAs to specific applications
such as MMs and simulation sub-types.

[0563] Alis a central feature of PHAs. PHAs have access
to Al technique and algorithm libraries and select the best
algorithms for a particular task. PHAs select different Al
techniques to apply to different MM functions. For instance,
when a PHA needs to identify a patient pathology, it may
access specific specialized types of Al techniques for that
task.

[0564] However, in the present system, PHAs may also
synthesize novel Al techniques by combining different Al
approaches—either sequentially or in parallel—for specific
MM applications. In effect, the system enables PHAs to
combine multiple Al techniques into a custom algorithm for
specific MM simulation applications. For example, the
PHAs may combine two or more of the Al techniques listed
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in FIG. 2. Note also the list of Al techniques on each MM
Level in the IMM system shown in FIG. 1. In addition,
PHAs may use two or more Al techniques in a sequence to
solve a problem. In an embodiment, A PHA may reverse
engineer a unique synthetic Al technique from the require-
ments of a task to the Al combinations required for the task.
[0565] PHAs can be applied by physicians or medical
researchers for different applications. For doctors, PHAs
analyze patient medical data, package medical data, provide
diagnostics guidance, provide drug trial guidance and pro-
vide therapeutic selection guidance.

[0566] PHAs can assist in constructing different types of
specialized medical MMs. Because they are endowed with
Al techniques, PHAs supply diagnostic MM insights, prog-
nostic MM predictions and therapeutic MM solutions.
[0567] In addition to assisting physicians and medical
researchers, PHAs are useful in assisting patients too. PHAs
can assist patients in completing forms, updating patients
about diagnostic test status and educating patients on their
medical conditions and prognoses. PHAs are also useful for
interactions between patients and doctors. In the case of
patient oriented PHAs, there is a bi-directional connection
between the patient and the patient’s MM enabling dynamic
feedback between the patient and the MMs. In an embodi-
ment, PHAs act as intermediaries between patient MMs and
patient relationship management (PRM) software.

PHAs for Modeling Functions

[0568] PHAs perform model building of MMs and simu-
lations. PHAs collect data from different sources, including
medical databases and libraries, patient medical diagnostic
tests and patient EHRs and IHRs. In addition to collecting,
assimilating and aggregating patient medical data, MMs also
analyze the data in order to search for diagnostic solutions
and analyze and synthesize the data in order to search for
therapeutics solutions. PHAs also assist in building MMs
themselves, including identification of a useful technique for
each MM level in the IMM system.

[0569] PHAs can build two or more MMs simultaneously
by applying multiple Al techniques that fit each respective
model type. In addition to building MMs, PHAs are applied
to building model simulations and in silico experiments too.
[0570] PHAs are applied to building diagnostic MMs of
individual patient diseases in order to identify the sources of
a patient pathology. The PHAs apply various Al techniques
in order to identify data, identify areas in which the data are
incomplete, and interpret and analyze the limited available
data. PHAs not only build the MMs and simulations, but also
enable the physician or medical researcher to interact with
the MMs to update data, interrogate the model or refocus the
model.

[0571] PHAs enable medical MMs to provide in silico
experiments and analyses. By employing PHAs to activate
an in silico experiment, dysfunctional proteins can be iden-
tified, compared to healthy reference genes, RNA and pro-
teins, specific attributes recognized and functional conse-
quences of dysfunctional proteins in protein and cellular
pathways specified.

[0572] PHAs may be configured to design in silico experi-
ments in an MM. PHAs design experiments with a goal and
specified methods of operation. PHAs can be tuned for
problem solving, classification, sorting and ranking, and
supplying scenario outcome options.
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[0573] PHAs are applied to MM applications in order to
supply accurate diagnostics, prognostics and therapeutics. In
the case of diagnostic MMs, PHAs build a model of patient
pathologies, which includes information collection features
and functional problem finding features in order to map a
patient pathology. Further, PHAs are configured to provide
analyses of biomarker data in order to identify diagnostic
solutions.

[0574] PHAs are applied to prognostics in order to make
predictions. Once a MM has identified a patient diagnosis,
PHAs apply Al techniques in order to forecast the evolution
of a patient disease. In addition to the application of PHAs
to diagnostic prognostics, PHAs are applied to therapeutic
prognostics by tracking the patient disease in the context of
drug or therapy feedback. In this context, PHAs supply
probabilistic scenarios of outcomes from application of
different drugs or therapies for each patient. PHAs are also
applied to preemptive medicine by predicting disease emer-
gence before the onset of symptoms by analyzing biomark-
ers and patient data that indicate a probable disease onset in
different scenarios.

[0575] PHAs are applied to therapeutics in order to select
an optimum therapeutic remedy, viz., a therapeutic drug
candidate, for a patient pathology, or to construct a novel
synthetic drug for a unique patient pathology.

[0576] PHAs are the workhorses of the IMM system much
as proteins are the workhorses of the human cell.
PHA Typology
[0577] The present invention specifies a set of differenti-
ated PHAs.

[0578] 1. PHA-m: Model Builders

[0579] 2. PHA-a: Analyzers

[0580] 3. PHA-s: Searchers

[0581] 4. PHA-c: Combiners

[0582] 5. PHA-i: Interrogators

[0583] 6. PHA-mes: Messengers

[0584] 7. PHA-b: Brokers

[0585] 8. PHA-sec: Security

[0586] 9. PHA-p: Predictors

[0587] 10. PHA-sims: Simulators
[0588] PHA-m’s are model builders that perform tasks
associated with building MMs, such as combining data into
tables, graphs and models and representing data in models or
simulations.
[0589] PHA-a’s are analyzers that perform tasks involving
analysis or synthesis of elements in MMs.

[0590] PHA-s’s are searchers that seek out data from
databases.
[0591] PHA-c’s are combiners that combine two or more

Al techniques or algorithms into a hybrid synthesis for
application to a particular issue involved in a MM.

[0592] PHA-i’s are (adversarial) interrogators that
actively interrogate data in order to build or optimize a
model.

[0593] PHA-mes’s are messengers or communicators that
pass messages between models and other agents.

[0594] PHA-b’s are brokers that intermediate between
MMs and LLMs or medical databases.

[0595] PHA-sec’s are security agents that enable different
levels of security in MMs.

[0596] PHA-p’s are predictors that forecast or predict
event scenarios based on MM data.
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[0597] PHA-sims are simulators that construct simulations
from MMs.
[0598] The various agents work together with a division of

labor to accomplish MM goals. The agents can be assigned
to a set of tasks such as outlining a MM, seeking data from
a medical database, interfacing between two or more MMs,
completing two or more MMs, interrogating MM data,
storing MM data, making predictions, generating simula-
tions, combining Al algorithms into useful specialized
hybrids, analyzing MM data, adversarially interrogating
MM data or passing messages between MMs.

[0599] In one main mode, PHAs passively build MMs by
collecting, sorting and completing data sets. In another
mode, PHAs are active, dynamically initiating interactive
experiments to test a hypothesis.

[0600] PHAS can also launch minor PHAs in order to add
capabilities to more quickly and efficiently execute a task.

Integrated Health Record Platform: Integrating IMMs,
Health Data Management, Medical Data Security and
Patient Relationship Management

[0601] For centuries, physicians took copious paper notes
to track and manage patient conditions. This worked well
until the computer and cloud revolutions. In the 2000s,
medical practices have begun using electronic medical
records (EMRs) to collect and manage information about
patients. These EMR patient data, however, were limited to
a specific doctor’s office or in-house clinical practice, mainly
because of strict government privacy and security regula-
tions. For the most part, like a patient chart, each individual
EMR can be seen as a single record about a single event.
While the goal of an EMR was to replace the patient chart,
the outcome is less spectacular. Constraints in the quality,
cost, standardization and security of maintaining EMRs put
pressure on physicians to find alternative solutions.

[0602] Electronic Health Records (EHRs) represent a step
in the evolution of medical records management. EHRs
comprise an electronic version of a patient’s medical history.
EHRs are accessible to medical care workers in different
organizations, enabling the tracking and sharing of medical
records among physicians across clinical domains. In some
ways, EHRs offer an extension into healthcare from enter-
prise data management technologies, thus enabling the stor-
age of health records by physicians of medical histories,
blood and imaging diagnostic test results, immunization
status and billing and insurance information. When used by
hospitals, EHR data can be aggregated and analyzed, in
order to guide data management practices.

[0603] EHRs have challenges too. There are concerns
about safety, medical errors or inaccuracies, privacy, secu-
rity, legal liability and standardization involving EHRs,
among other things. So far, physician productivity has not
been promoted by EHRs, mainly because of the major time
commitment required to develop and manage EHR record
keeping. While, in time, it may be possible for GenAl to act
as copilots for clinicians in order to efficiently manage
patient records, so far this goal is only a dream.

[0604] In contrast to EMRs and EHRs, a personal health
record (PHR) is an electronic record with medical data
controlled by a patient, the content of which the patient
determines whether to make available to a health provider.
[0605] The advent of novel digital technologies may have
facilitated the next step in the evolution of electronic patient
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records, thereby enabling a next generation of patient record
organization that will overcome past challenges.

Integrated Health Record Platform (IHRP) and IMMs

[0606] The present invention specifies an IHRP. The IHRP
is a health record platform that integrates different levels of
patient healthcare data. The different levels include:

[0607] Private health data (doctor)

[0608] Multiple doctors sharing private patient health
data

[0609] Health data with patient permissions

[0610] Privileged patient health data (private health
data)

[0611] Generalized patient health data

[0612] Anonymized patient health data

[0613] Insurance private patient health data

[0614] Previous electronic health record systems, such as

EMR or EHR, simply replace written doctor notes with
electronic doctor notes. These prior elemental systems pro-
vide useful baseline data for the IHRP system as patient data
are input. However, the IHRP also includes medical research
article data, pre-clinical data, clinical trials data and
genomic, proteomic and multiomic data sources as well. All
of these data sources supply general medical data and
specific patient medical data to the IHRP.

[0615] The IHRP can be used on relational, object-rela-
tional or other database management systems. The IHRP can
also be applied in the cloud (pubic, private or hybrid) as well
as at the edge in computers, phones or devices. These data
structures enable automatic updating of data.

[0616] The IHRP applies natural language processing
(NLP) technologies and algorithms to analyze health
records. By applying NLP, the IHRP can survey, analyze and
summarize medical articles or patient charts and translate
medical articles into different languages. By using vector
databases, GenAl algorithms can overcome a problem of
obsolescence of too-old data in LLM training data. GenAl
technologies also enable the transfer of data from lower-
level patient electronic records into MMs. Alternatively,
GenAl technologies can be programmed to summarize MMs
in general patient electronic records. By enabling interaction
between MMs and IHRP patient data, patient data can be
constantly updated, with updates that feed patient MMs; as
the MMs adapt with the newest data, they can make more
accurate predictions and recommendations.

[0617] PHAs conduct many functions in the IHRP system
in order to process patient data, including searching for data,
storing data, adding data to MMs, analyzing data, securitiz-
ing private health data, generalizing patient health data,
anonymizing patient health data and intermediating between
a patient’s doctor and patient’s insurance company.

[0618] At an early level, patient medical data are orga-
nized, analyzed and summarized. Early level patient data are
input into MMs. For instance, traditional EMR and EHR
patient data are input into the IHRP.

[0619] The MMs apply different data types. The MMs
access vast medical research, genomic, proteomic and mul-
tiomic databases in order to identify reference health data.
But the MMs also receive data inputs from physicians or
medical researchers for individual patient data on specific
diseases. The HRP integrates these data types. The MMs
draw on the generalized medical databases and the indi-
vidual patient data input by electronic records from the
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IHRP. But the MMs also export model data to the IRP,
particularly model data, analysis and summaries.

[0620] Electronic patient data are routed to different MM
components from the HRP. For instance, an electronic
patient record can feed data to the HRP and then to a
patient’s medical MM for a diagnosis. Electronic patient
records can be structured or unstructured. However, the
IHRP can structure the data by imposing a system of
standardization on the records.

[0621] Electronic patient records accumulate patient data
by including patient test results and patient condition assess-
ment. These data are input into the IHRP and then to a
patient’s MM. In an embodiment, digital health data are
translated to a MM by applying NLP. In addition, PHAs can
automate data translation from electronic patient records to
MMs.

[0622] The IHRP system and the IMM system can coop-
erate by sharing data to solve a problem. For example, an
IHRP can aggregate patients’ data from multiple patient
MMs so as to identify drug targets, predict drug outcomes
with different variables or track disease progression under
different conditions. Aggregate patient data analysis of mul-
tiple patient electronic records can be anonymized (de-
identifying patients) and secured. For instance, in the case of
clinical trials, patient medical records can be anonymized by
removing patient identification from record analysis.
[0623] Different stakeholders can have access to the
patients’ HRP data, including internists, specialists, a hos-
pital or clinic, drug clinical trials and vaccination adminis-
trators.

Patient Data Security Management in IHRP

[0624] Patient medical data require different levels of
security. Each process of patient data collection, storage,
analysis and transmission requires data privacy and security.
The patient data security management (PDSM) system is
configured to provide several levels of data security man-
agement.

[0625] The PDSM system is designed to receive patient
consent and permissions at different points in the process
depending on the recipient of the information. Though
general practitioners, specialist physicians and surgeons,
registered nurses, physician assistants, clinical trials and
insurance companies each require access to patient data,
there is a need for patients to supply authorization of data
access to particular patient information. As sensitive patient
data lie in different healthcare databases, it is necessary to
prioritize the security clearance thresholds for these data
sets.

[0626] The present PDSM system establishes a set of
several layers of security for patient healthcare data in order
to maintain patient privacy and security. On the top layer are
highly confidential patient medical data that is privy to
specific physicians such as the patient’s primary doctor
and/or to the patient’s specialist doctor(s). In these instances,
access to patient data on a specific patient event or disease
is highly restricted and must be approved for transmission to
specific physicians and healthcare providers. The patient
may provide limited consent to these unique data sets in
order to grant access. These data are color-coded as red.
[0627] On the next layer are generally confidential patient
medical data on a specific patient condition, such as a
particular patient pathology, or on a general or chronic
patient health condition. The patient must agree to consent

Oct. 16, 2025

on the distribution of patient medical data on these specific
pathology to specific physicians. These data are color coded
as orange.

[0628] On the third layer are general patient information
that can be disclosed or transmitted to physicians or other
clinicians, such as doctors in a hospital setting, or within a
specific clinic or hospital group. For these data, patient
consent for transmission will be requested before a hospital
stay. These data are color coded as green.

[0629] When a patient is admitted on an emergency basis
to a hospital or clinic, the administration must request to a
consent of information for acute care so that high priority
patient health information can be transmitted in their health-
care system. These data are color coded as blue.

[0630] In the case of clinical trials, patient data can be
anonymized and provided to the clinical trials administra-
tors. These patient data can be supplied to administrators
once they are confirmed to be scrubbed of specific identi-
fiable patient data. These data are color coded as purple.
[0631] As the PDSM system is integrated into the IHRP,
patients are able to provide selective access of private
patient health data to doctors with general or specific con-
sent and permissions. As the patient health pathology is
investigated, the patient may conclude that the data are
essential for other specialists and may thereby provide
general consent to data transmission. But some patients may
decide that the data must remain private and may only
provide consent for access to the patient data to one or two
physicians.

[0632] While patient data are input into the THRP, the data
are sorted into different levels of security. When the data are
transferred from the IHRP to the MMs, the data are also
organized according to levels of security priority. There will
be times when the MMs will require access to more patient
data; at these times, the MMs will request permission to
access confidential patient information in order to complete
its tasks. Without sufficient information, MMs cannot per-
form adequate analyses, so it benefits the patient to supply
consent to enable access to these data. In an embodiment, the
MMs can import and analyze the confidential patient infor-
mation while keeping the information private. Also, the
summary of the MM outputs can include different levels of
security to enable a general or specialized private descrip-
tion of a patient disease.

[0633] In order to limit access to patient data, the data files
are encrypted. When the patient enables selective or general
disclosure of their data, the data are decrypted for a specified
purpose.

[0634] PHAs may be applied to secure patient consent,
primarily by requesting consent and explaining to the patient
the need for specific data in order to complete a particular
task.

[0635] In an embodiment of the invention, the IHRP
system and MMs are configured on the blockchain. One
advantage of the blockchain is the combination of data
structured on a distributed ledger with data security. In
addition to traditional blockchain-enabled encryption, data
on the blockchain can be tokenized, which supplies an
additional layer of data security.

Patient Relationship Management

[0636] Patient relationship management (PRM) consists
of analytical, operational, patient management and collabo-
ration components. While customer relationship manage-
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ment software for healthcare is tailored mainly for applica-
tion to administration of hospitals or clinics, PRM focuses
on supplying tools directly to patients and doctors in order
to optimize the patient healthcare experience. PHAs are
applied to actively perform various functions in the PRM
domain.

[0637] The analytical function of PRM software is sup-
plied, on one level, to interpret and analyze data in health
records, interpret patient medical tests and make therapy
recommendations. On another, higher, level, the analytical
function is primarily to build MMs from general medical
inputs and specific patient healthcare data.

[0638] The operational function of PRM software is
applied mainly to administrative healthcare processes. For
instance, a medical doctor office administration, insurance
claims processing, doctor employee hiring, training and
management, administrative and nursing staff scheduling,
patient-nurse/staff communications and doctor-nurse/staff
communications are tracked in the operational function.
[0639] The patient management function of PRM is
applied to tasks such as patient tracking, patient-doctor
communications, medicine tracking, treatment feedback and
doctor and testing appointment scheduling. The patient
management function includes personalizing and automat-
ing the patient healthcare experience. These functions
include personalized data collection for medical tests, coor-
dination with doctors to interpret tests, coordination of a
patient diagnosis with a physician, coordination of therapy
options with physicians and facilitation of therapy option
assessment and therapy updates. GenAl can be applied to
these processes in order to learn about and personalize each
patient process. The patient management function of PRM is
substantial after interaction of a patient and their doctor. The
system enables the automation of medical records manage-
ment, health benefits (e.g., insurance), digital pharmacies,
care giving and coordination, chronic condition manage-
ment and medical management. PRM software provides
interfaces between patients and their care givers.

[0640] The collaboration function of PRM enables collab-
orative interdepartmental data flows. When patients enroll in
drug clinical trials, PRM software can connect patients to
specific studies according to the unique criteria of the trials
in order to match patient eligibility. The collaborative func-
tion builds relationships between specialist physicians and
drug or biotech companies in order to find matches for
clinical trial program eligibility. Since drug companies are
seeking very specific patient profiles, such as patients with
a unique genetic mutation, they will likely wish to work with
many specialists who interface with patients that feature
these sorts of genetic mutations.

[0641] The advent of digital technologies provides the
ability to search for eligible patients worldwide and for any
patient to find a clinical study worldwide too. So, the PRM
software system can facilitate a process that resembles a sort
of broker for information to connect patients and drug
companies. In fact, the MMs of patients can be accessed by
clinical trial program administrators. Aggregated anony-
mized patient MMs enable clustering patients with similar
pathology situations. Doctor specialists can register patients
with unique disease genetics. Similar patients with shared
diseases can be in trials and treatments together, but perhaps
distributed over a longer distance; for instance, patients can
be identified with similar biomarkers and MM diagnostic
analyses. This approach leads to space-transcendent distrib-
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uted studies, trials and treatment programs. The PRM col-
laborative system enables a social medical diagnostics and
treatment network.

[0642] MMs are a nexus for PRM since patient data are
stored and analyzed in patient’s IMMs. From these data,
therapeutic solutions may become possible by networking
with drug companies and drug clinical trials worldwide.

Individualized Medical Modeling for Diagnostics

[0643] For centuries, physicians evaluated patient symp-
toms in order to make diagnoses. Even today, many diag-
nostic systems simply automate the symptom-based process
of identifying a disease. But limiting a diagnostic evaluation
to patient symptoms alone is insufficient to identify the
source of many diseases because similar symptoms tend to
mimic different diseases; such an approach is imprecise and
incomplete. The discovery of genomics has revealed a far
more complex molecular network that underlies the source
of many diseases, particularly chronic or hereditary diseases.
[0644] In its most advanced implementation, computer
analyses can be applied to biomolecular phenomena in order
to discover the sources of patient diseases. At the center of
these diagnostic investigations lie individualized medical
modeling (IMM), a novel modeling system that applies Al
to identify each individual’s unique disease attributes and
sources. While progress has been recently made in identi-
fying the structure of healthy proteins from amino acid,
RNA or gene sequences, these data merely show a reference
model against which pathologies can be measured. MMs
compare the reference medical and healthy protein structure
database or LLM protein prediction information to actual
patient pathology data in order to develop a precise under-
standing of each patient’s condition. This application of
IMMs to personalized medicine applies Al, ML and DL
techniques to analyze each patient’s gene, RNA and protein
biomarkers in order to assess the individuals’ disease attri-
butes. Consequently, MMs solve the problem of medical
diagnostics at the granular level so we can understand the
causes and dynamics of each patient’s disease. This preci-
sion-oriented perspective of medical diagnostics is genera-
tions beyond the traditional symptom-based model of yes-
teryear.

IMMs for Personalized Medicine (PM) Diagnostics

[0645] One of the challenges of modern medicine is the
bifurcation of diagnostics and therapeutics. On the one hand,
the internist will diagnose a pathology and then typically
refer the patient to a separate specialist for therapy. If the
first level diagnosis is imprecise or incomplete, particularly
because it is focused on a symptom-based diagnostics para-
digm, the therapy may miss the mark. This is a problem with
Al applied to the traditional symptom-based diagnostics
approach, which merely accelerates an obsolete diagnostics
model. Until recently, patient diagnostic test data were
limited to blood and imaging diagnostics. The challenge lies
in overcoming incomplete information about a patient
pathology since it lacks diagnostic precision.

[0646] In some ways, medical diagnostics is a sort of
puzzle. With limited information, a physician is tasked with
finding a solution, viz., an accurate diagnosis of a patient
disease. For some simple medical matters, it may be suffi-
cient to analyze incomplete data on a patient condition that
is more or less straightforward. But in many cases, a more



US 2025/0322963 Al

complete battery of diagnostic testing will be required in
order to understand the contours of the patient’s disease.
Unfortunately, in many cases, doctors are only able to
describe the manifestation (i.e., symptoms) of a disease and
lack the tools to look deeper.

[0647] MMs combine computer modeling and advanced
Al and ML techniques in order to analyze biomedical data.
Whereas in the past, we were limited to generalized medical
information, in the past two decades a revolution has
occurred with the discovery and illumination of the human
genome. The revelation of understanding the precise genetic
sources of our diseases has led to corresponding revolutions
in RNA and proteomics, which are the agents and products
of our genes. If about 90% of many diseases have as their
source a genetic cause, then understanding genetic and
proteomic attributes, dynamics and relationships is crucial to
advancing medicine and medical diagnostics.

[0648] Not only have we deciphered the human genome,
we have identified chromosomal maps that locate specific
genes at specific addresses and zip codes on the chromo-
somes. Human genetic data are stored in 23 pairs of chro-
mosomes, with chromosome 1 being the largest and other
chromosomes being progressively smaller. The 237 pair are
distinctive chromosomes, X and Y, that allocate sex; females
have a pair of X chromosomes while males have an X and
Y chromosome. Genes are the constituent components of
chromosomes. Because chromosomes are unusually long
molecules, they are tightly wrapped around proteins. A
centromere is a thin band that separates each chromosome
into a long arm (q) and a short arm (p). The genes in each
chromosome are classified in a numbering system illustrat-
ing cytogenic mapping. For example, a hemoglobin beta
gene (HBB) is located on chromosome 11pl15.4, which
designates that the gene is on the short arm of chromosome
11 and positioned at address 15.4. The largest chromosome,
viz., number 1, contains over 3000 genes, number 2 contains
over 2500 genes and so forth. By identifying the specific
genes and their precise addresses on chromosomes, we can
identify risks of disease development by recognizing and
analyzing individual gene mutations.

[0649] We are all born with genes inherited from our
parents. However, genes can decay over time, describing
somatic gene mutations that occur as we age. Such somatic
gene mutations reflect ordinary wear and tear as well
pathologies that accelerate genetic degradation. Epigenetics
can influence some features of this genetic degradation.
When different cell lines in different biosystems degrade at
different rates, the asymmetric somatic gene mutations
reflect the gene alternations which are responsible for some
chronic pathologies.

[0650] Molecular MMs are useful for ascertaining and
precisely pinpointing the genetic variants that encode abnor-
mal RNA and proteins that generate specific pathologies.
MMs are applied to molecular biomedical data in order to
track the sources of pathologies and predict disease progres-
sion.

[0651] In addition to molecular genetic, RNA and protein
maps, MMs are also applied to cellular biology. While
proteins are the workhorses of the cell, the internal opera-
tions of dysfunctional protein interactions and pathways that
generate many intracellular pathologies need to be mapped.
Cells, too, contain components that are mapped according to
specific cellular addresses and zip codes. For instance, the
nucleus of a cell may have a zip code, while the multiple
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mitochondria may have different addresses. Internal cellular
components are mapped in MMs in order to distinguish
healthy cellular behavior from pathological cellular behav-
ior. Each major cell type, generally corresponding to the
different main organ types, may have a slightly different
basic architecture that necessitates a differentiated map that
refers to different structural and functional elements. For
example, nerve cells embody a different architecture than
red blood cells, each different type of which requires a
unique map or model. Thus, MMs are applied to modeling
intracellular and intercellular anatomy and mechanics.
[0652] Organs and organ systems also contain addresses
and zip codes that enable the clear mapping of these bio-
logical objects. For example, the vasculature has zip codes
that specify the different locations of different regions of the
system. A map of a patient’s heart will be essential to
understanding the patient’s unique cardiological anatomy
and dysfunctions. Similarly, a map of a patient’s brain and
nervous system will be essential to understanding the
patient’s unique neurological anatomy or neurodegenerative
dysfunctions. Zip codes and addresses are applied to the
various human biosystems, from the cardiovascular system
and nervous system to the endocrine system and skeletal-
muscular system, thereby enabling individualized medical
models in order to understand pathologies unique to each
patient.

Biomarker Analysis in IMMs for Diagnostics

[0653] According to Wikipedia, a biomarker “is a mea-
surable indicator of some biological state or condition.”
Biomarkers can be applied to diagnostics to identify a
disease condition or to prognostics to identify the progres-
sion of a disease. Biomarker types include blood drawn
protein, imaging and digital biomarkers.

[0654] There are a number of biomarker categories,
including diagnostic biomarkers, prognostic biomarkers,
predictive biomarkers, pharmacodynamic biomarkers and
risk biomarkers. Diagnostic biomarkers detect the presence
of a disease. Prognostic biomarkers predict the probability
of a disease progression. Predictive biomarkers are applied
to identify genetic features that enable a patient to more
likely to respond to a targeted medicine. Pharmacodynamic
biomarkers, also called therapeutic prognostics biomarkers,
track drug reactions in patients. Risk biomarkers predict the
probability of, or predisposition for, a patient to contract a
disease.

[0655] An example of a typical protein biomarker includes
a prostate specific antigen (PSA), which signifies the pres-
ence of prostate cancer and cardio reactive protein (CRP)
which signifies the presence of inflammation and, in some
cases, coronary artery disease. Imaging biomarkers include
CT or PET scans of solid tumors. Digital biomarkers apply
electronic devices to detect electrical signals such as heart
rate or brain electrical signals.

[0656] Since the main workhorses in cells are proteins
generated from genetic transcription and translation, by
discovering ways to accurately identify abnormal proteins
we can advance an understanding of disease. Recent devel-
opments in assay methods of processing DNA, RNA and
proteins provides us with insights into these molecular
biomarkers.

[0657] While these prior biomarker types have been used
in traditional medical diagnostics, the genomics revolution
has enabled new classes of molecular biomarkers that
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include genes, RNA, proteins, peptides and small molecules
that supply detailed information about the presence, evolu-
tion and origins of diseases. This new generation of molecu-
lar biomarkers present enormous opportunities to advance
personalized medicine by substantially increasing the pre-
cision of medical diagnostics.

[0658] Identifying a healthy gene, RNA or protein is
insufficient to properly diagnose a disease. Rather, it is
necessary to identify gene mutations, RNA variants and
abnormal proteins in order to perform a diagnosis. The
ability to identify and quantify these abnormal gene, RNA
and protein molecules provides a revolutionary opportunity
to identify, and understand the sources of, disease. In recent
years, there has been an explosion of molecular biomarkers
that indicate the presence of disease. The miR database
(miRbase) of miRNA biomarkers consists of about 2500
examples. Though the FDA has approved only about 100
biomarkers, there are likely tens of thousands of potential
molecular biomarkers that roughly mirror protein coding
genes, non-coding genes, protein coding RNA, non-coding
RNA, proteins, peptides and metabolite small molecules.
[0659] One of the critical enabling technologies for the
industrial processing of biomarkers is next generation
sequencing (NGS) that rapidly sequences molecular data in
massively parallel arrays. For example, RNA-seq devices
identify novel RNA variants.

[0660] Cancer applications are the paradigm for molecular
biomarker study. Since all cancers have as their source
genetic mutations, abnormal gene, RNA and protein bio-
markers are critical tools for identifying the presence of the
disease.

[0661] Many diseases have multiple biomarkers. Conse-
quently, a macro-biomarker analytical methodology is
required in a biomarker group selection process. ML is
applied to analyze a set of biomarkers. The biomarkers are
weighted in importance to a specific disease. The biomarker
candidates are sorted according to active and passive status.
Active biomarkers are ranked. The ML algorithm applies
cluster analysis or regression analysis techniques to sort and
rank the biomarkers. The result is to separate out the most
likely biomarkers that may identify particular diseases
among the hundreds of candidates.

[0662] Another factor to consider is the quality of a
protein’s abnormality. Protein abnormalities, like gene
mutations, are not fixed, but rather exist on a spectrum.
Identifying the specific geometrical configuration of a pro-
teomic abnormality provides important information on the
nature of specific pathology. Therefore, identifying the
unique abnormality of each biomarker is critical to under-
standing the nature of a disease.

[0663] The existence of hundreds of abnormal molecular
biomarkers in a patient may indicate the existence of a
disease the precise dimensions of which would be unique to
the patient. It is typical for a patient to embody hundreds of
abnormal molecular biomarkers without yet exhibiting dis-
ease symptoms. However, a smaller subset of specific abnor-
mal molecular biomarkers may reveal the source of a
patient’s genetic disease.

[0664] MMs are a central forum for application of bio-
marker analyses. Biomarker data are fed into the MM
system, which then applies ML tools to analyze the bio-
marker information. In order to build a model of a disease,
the MM needs to evaluate the patient’s biomarker data. The
MM compares the abnormal patient biomarker data to
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libraries and databases of healthy DNA, RNA, proteins and
metabolites in order to evaluate the biomarker information.
The MMs also build 3D models of molecular and cellular
structures and attributes.

[0665] Physicians utilize MMs by inputting each patient’s
biomarker data in MMs in order to perform analyses of the
data. ML tools apply Al techniques and algorithms to
analyze the DNA, RNA and protein biomarker data. As an
example, after 150 relevant biomarkers are discovered to
identify a patient disease, the MM analysis reveals that five
biomarkers are critical to indicate a particular form of the
disease, thereby enabling an accurate diagnosis of the
patient’s underlying condition. Once identified, these critical
biomarkers can then be used as drug targets. While MMs are
a central tool for analysis of patient pathologies, molecular
biomarkers represent the essential data inputs.

[0666] Molecular and cellular biomarker data provide
clues to functional proteomic processes that indicate the
presence of disease. Protein-protein interactions, protein-
ligand interactions and protein-lipid interactions are
examples of functional proteomic processes that are impor-
tant to understanding the operation of disease. The MM
system compares patient abnormal biomarker data to healthy
biomarker data in DNA, RNA and protein databases and
libraries in order to understand distinctive differences that
differentiate a patient’s pathology from a healthy patient.
[0667] In an embodiment of the invention, the system
enables MMs to collect data from liquid biopsies in which
blood tests reveal biomarkers that are then analyzed for the
presence of cancer.

Identification of Novel Biomarkers in IMMs

[0668] It is clear that gene variants [single nucleotide
polymorphisms (SNPs)], RNA abnormalities and dysfunc-
tional protein structures represent useful biomarkers for
diagnostics. Whereas there are thousands of potential known
biomarkers, how can we detect novel biomarkers? Novel
biomarkers are useful in detecting the presence of, in moni-
toring, and in predicting the progress of, individualized
diseases. RNA-seq is a key method to identify novel bio-
markers, particularly RNA biomarkers.

[0669] RNA analysis has emerged as a key analytical
component for novel biomarker discovery. RNA represents
a family of post-transcriptional molecules that convert DNA
into proteins. Three main RNA types include post-transcrip-
tional modification RNAs, protein synthesis RNAs and
regulatory RNAs. Post-transcriptional modification RNAs
include small nuclear RNA (snRNA), which splice mRNA,
small nucleolar RNA (snoRNA), which are involved in
methylation of rRNA and tRNA, guide RNA (gRNA), which
modify mRNA, and ribonuclease (RNase), a family of
RNase’s which cleaves RNA. Protein synthesis RNAs
include messenger RNA (mRNA), a single-stranded RNA
that codes for protein, transfer RNA (tRNA), which carries
an amino acid matching the mRNA to the ribosome to enable
protein translation, and ribosomal RNA (rRNA), the main
component of ribosomes and about 80% of the composition
of RNA in a cell. Regulatory RNAs are considered the
“sculptors of gene expression” that precisely configure, or
block, transcription and protein encoding. Regulatory RNAs
include antisense RNA (aRNA), a single stranded RNA
complementary to mRNA to which it binds and inhibits,
non-coding RNA (ncRNA), including small ncRNA (15-31
bp length), medium ncRNA (20-200 bp length) and long
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ncRNA (IncRNA) (200+bp length), which play roles in
epigenetic modifications by regulating gene expression,
micro RNA (miRNA), single stranded RNA (about 22 base
pairs length) that interferes with other RNAs, small inter-
fering RNA (siRNA), double stranded RNA (about 20-25 bp
length) that interferes with other RNAs and circular RNA
(circRNA), which possess properties that include protein
coding and gene regulation. Among these major RNA types,
three types are particularly useful as biomarkers to detect
disease or disease progress. The three main RNA types
useful as biomarkers are mRNA, IncRNA and miRNA.
Refer to FIG. 3 for an RNA typology.

[0670] A reverse-engineering process for identifying RNA
biomarkers from a specific disease is to take blood, fluid or
tumor samples from a patient and initiate an RNA-seq
testing process. These raw RNA data, which are typically
mRNA, IncRNA or miRNA, are first plotted on a graph and
then compared to RNA database reference data of healthy
RNA examples. The sample RNAs reveal the expression
levels of the patient disease relative to the RNA database
reference data. These comparisons reveal substantial differ-
ences between the sample RNA examples and the reference
RNA benchmark data, which are represented on a graph. The
MM then weights the sample RNA examples to give priority
to those with the strongest readings. For example, the RNA
samples with the most quantity or more significant aberra-
tions or abnormalities are weighted higher than more benign
RNA samples. The MM then applies ML techniques to
categorize the RNA samples according to functional utility
whereby the RNAs are analyzed for their protein pathway
utility. The most likely RNA biomarker candidates to signify
a correlation with a specific disease are selected and ranked.
In the next step, the RNA candidates are validated based on
the highest likelihood of prediction of success in identifying
a particular disease. Out of an initial set of over 1,000 RNA
biomarker candidates, the final outcome may have fewer
than twenty validated biomarker candidates. Depending on
the quality of the RNA selection criteria, the list of validated
biomarker candidates can be further restricted to a handful.
At least one PHA may assist the MM in analyzing the RNA
biomarker information.

[0671] Another method analyzes a pathology and reverse
engineers the protein translation process in order to discover
biomarker candidates. The biomarkers are analyzed in the
context of mapping protein pathways in cellular networks.
The identification of novel biomarkers is important in order
to identify unique pathologies such as orphan diseases.
Since there are at least 8000 orphan diseases, there are likely
tens of thousands of novel biomarkers, many of which have
yet to be discovered but which are crucial to understanding
the origins and evolution of each genetic disease.

[0672] Similar exercises can be applied to DNA, protein,
lipid and small molecule biomarker candidates. While the
FDA has about 100 approved biomarkers, in the coming
decades we may see thousands or tens of thousands of useful
molecular biomarkers that enable researchers to identify and
understand the evolution of many diseases with great pre-
cision.

[0673] Novel biomarkers are useful in analysis of the
identification, and monitoring, of a precise phase of a
disease progression. As a disease evolves from phase to
phase, novel biomarkers can track the presence of the
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disease into each new phase. Analysis of patient biomarker
data enables stratification of the patient disease according to
a risk-based examination.

In Silico Experiments for Diagnostics in IMMs

[0674] In silico experimentation is an important element
of MMs. Rather than depend on in vivo or in vitro testing,
in silico testing enables the application of a broad range of
computational analytical tools that furthers our understand-
ing of biomedicine. An argument can be made that DNA,
RNA and protein aberration data alone are insufficient to
identify a disease because this information simply says that
a patient has a disease but does not understand the functional
dynamics—molecular and cellular pathways, proteomic
interactions and multiomics mechanics—necessary to
understand the disease. For this reason, MMs, in combina-
tion with Al and ML techniques, provide a critical advantage
in progress towards personalized medicine.

[0675] In silico experiments enable MMs to test different
assumptions under different hypotheses in order to isolate
biochemical, molecular, cellular or biological system prob-
lems. Particularly in the case of multivariate biological
problems, the in silico experiment enables MMs to identify
solutions to complex challenges involving diagnostics.
[0676] There are several main types of in silico experi-
ments. First, there are diagnostic experiments to analyze a
patient’s disease. Second, there are diagnostic prognostics
experiments to analyze the progress or evolution of a
patient’s disease without any treatment. Third, there are
therapeutics experiments to analyze the best options to apply
an existing therapy to the identified disease. Fourth, there are
advanced therapeutics experiments to analyze the best
options to design a novel synthetic drug for the identified
disease. Finally, there are therapeutic prognostics to analyze
the dynamics of a disease progress with application of a drug
or drugs. Theoretically, it is possible to analyze a patient’s
pathology from diagnosis and prognosis through therapeu-
tics and therapeutic prognostics entirely in MMs with in
silico experimental analytics.

[0677] One example of application of in silico experi-
ments with MMs involves the process of identifying a
patient’s pathology target. Identifying a mutated gene or an
abnormal protein structure by applying analytical techniques
or by reverse engineering an experiment to discover the
source of a disease is a paradigm of medical diagnostics. The
experimentation process can discover more information than
sequencing data alone. ML-assisted MMs can analyze the
unique expression characteristics of a gene mutation or an
abnormal protein that are essential to understanding the
unique complexity of an individual’s disease. In addition to
the structural abnormalities of a patient’s disease profile, the
experiments also analyze the operational dynamics of
patient pathology. The MMs generate and test hypotheses
about operational dynamics of abnormal DNA, RNA, pro-
tein and cells behaviors. Once a pathology target is identi-
fied, for example, molecular or cellular processes that reveal
a pathology, then the pathology can be precisely solved by
applying a drug.

[0678] The in silico experimentation processes in MMs
are dynamic since the modeling characterizes the physiology
and biopathway mechanics of unique patient diseases. In
silico experiments are well suited to identifying pathology
protein pathway mechanics. In another example of applica-
tion of in silico experiments, complex multivariate diseases,



US 2025/0322963 Al

or multiple diseases, may require extensive computer analy-
sis to understand the disease(s). Regression and classifica-
tion analyses applied by ML in MMs and in silico experi-
ments may solve these complex multivariate medical
problems.

[0679] The IMM system reviews medical research articles
and medical libraries in order to obtain insights into refer-
ence medical data to inform its models. For example,
medical research articles are mined by applying NLP tech-
niques in order to identify drug targets. When a model
identifies a specific set of gene mutations that express as a
particular disease, the MMs collect a list of drug candidates
that may match the specific pathology.

[0680] MMs can apply in silico experiments to test for
numerous biomedical phenomena, including dysfunctional
proteins, dysfunctional cells, protein targets, protein binding
sites, protein-ligand binding and protein-protein interac-
tions. In an embodiment of the invention, the MMs can
conduct experiments in order to test multiple simultaneous
parallel interactions. Proteins can be tested simultaneously
with other proteins, ligands, lipids and small molecules.
[0681] If a patient has a cancer with 85 genetic mutations,
the MMs can apply combinatorial logic, combinatorial alge-
bra and/or partial differential calculus in order to identify the
specific genetic variant combinations that are most likely
causing the patient pathology in order to accurately identify
disease targets.

[0682] In silico experiments enable testing of assump-
tions, hypotheses or variables in complex biomedical diag-
nostic problems. PHAs are applied to experiments to accel-
erate the testing process. PHAs apply ML techniques and
algorithms to develop sims of experiments in order to
accelerate diagnostic analytics.

[0683] The MM system activates in silico experiments
involving protein-protein interaction, drug-target interac-
tion, drug-disease interaction and drug-drug interaction. The
modeling system builds sims of processes as well, including
intracellular processes, dysregulation of protein pathways,
DNA to RNA anomaly transcription and dysfunctional RNA
to protein translation processes. In addition, the modeling
system generates molecular protein models and sims,
including models of healthy protein to dysfunctional protein
interactions, molecular docking, molecular receptors,
molecular inhibitors, protein-ligand interactions, protein-
lipid interactions, protein to small molecule interactions and
RNA translation into proteins or peptides. The modeling
system also generates molecular models of non-coding DNA
and RNA into peptides that may regulate DNA or RNA. In
addition, the modeling system generates models involving
cellular interactions, cellular regulation, inter-cellular signal
transduction networking and inter-cellular dynamics. More-
over, the modeling system performs computational analysis
of protein docking predictions, including the most probable
docking candidates. Finally, pathogens can be analyzed in
the IMM system, including the possible reaction scenarios
of patients with and without vaccination.

[0684] Dozens of Al and ML techniques may be applied to
in silico experimentation in MMs as listed in FIG. 2.
[0685] In an embodiment of the invention, the IMM
system can build two sets of models for each patient
diagnostic. The first set of models is a reference model of
healthy biological processes that mirrors healthy reference
multiomics databases. This set of models may refer to the
patient’s past healthy history. The second set of models
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refers to the patient’s disease analysis. This second set of
models analyzes the patient pathology by employing ML
and in silico experiments of multiomics data sets in order to
discover the patient disease. Possessing the two sets of
models is useful for comparison with the patient herself
rather than with a reference database and enables the useful
tracking of the disease progress by constant reference to the
healthy reference models.

[0686] Without a precise identification of a pathology,
how can one apply a safe and effective therapy? Once we
have found a precise disease source (target), such as dys-
functional genes or proteins, then we can begin the process
of discovering or designing precisely targeted therapies.
[0687] The in silico experiments embedded in MMs for
application to diagnostics are organized on Levels 4 and 5 of
the present system.

Applications of ML and GenAl to Diagnostics in IMMs

[0688] GenAl, ML and DL are applied to diagnostics in
MMs by analyzing data on molecular biomarkers, cellular
features, gene expression and protein interactions. MMs
model, simulate and analyze molecular biomarker data with
GenAl, ML and DL.

[0689] First, variational auto encoders (VAEs) are applied
to the identification of gene expression stimulated by a
chemical compound.

[0690] Second, natural language processing (NLP) is
applied to an analysis of the translational language of amino
acids sequences and relations.

[0691] Third, large language models (LLMs) and NLP are
applied to the identification of relations between genes and
disease targets.

[0692] Next, geometric deep learning techniques are
applied to a 4D functional analysis of molecular biomarkers.
[0693] Further, manifold valued neural networks (MVNs)
are applied to the non-Euclidean 3D analysis of molecular
features of biomarkers.

[0694] Finally, generative convolutional neural networks
(GCNNGs) are applied to analysis of protein-protein interac-
tions and protein-ligand interactions.

[0695] PHAs utilize one or more of these techniques in
order to analyze and identify pathologies for diagnostics in
MMs.

IMMs Applied to Analyzing Diagnostics in Critical Diseases

[0696] Several classes of diseases are associated with a
high percentage of mortality in many countries worldwide.
These diseases are cardiovascular pathologies, neurological
and psychiatric pathologies and oncology pathologies. Not
coincidentally, these three classes of diseases are involved
with diseases of aging and are associated with rapid decline
in the quality of life for millions of patients worldwide.
MMs are applied to analyzing diagnoses in these diseases.
[0697] In addition to these disease categories, there are
thousands of orphan genetic diseases that will likely benefit
from MM analytics and diagnostics.

Cardiovascular Applications

[0698] Cardiovascular diseases have been the number one
cause of death in the US for the last century. Arteriosclerosis,
hypertension, hypercholesterolemia, arrhythmia, vascular
disease and stroke are among the top categories of heart



US 2025/0322963 Al

disease. Also refer to the discussion below of preemptive
medicine for an analysis of cardiovascular diseases.

[0699] Biomarkers involving coronary artery disease are
identified that are upregulated (miR-29, miR-100, miR-155,
miR-199, miR-221, miR-199, miR-221, miR-363, miR-467
and miR-508) and downregulated (miR-1273, miR-490,
miR-24 and miR-1284). Please refer to FIG. 4. Biomarkers
involving peripheral artery disease identify biomarkers that
are upregulated (miR-21, miR-34, miR-146, miR-210, miR-
15%, miR-26*, miR-30% miR-98% miR-125%, miR-152%,
miR-181, miR-100* and miR-127* (*=carotid plaques)) and
downregulated (miR-520% and miR-105*% (¥*=carotid
plaques)). Regarding hypertension, biomarkers are identi-
fied that are upregulated (miR-145-5p, miR-1-3p and miR-
423-5p and high levels of PCSK9, MyBPC3 and DNase 1)
and downregulated (NOX1 and CYBb). MMs are applied to
analyze the biomarkers indicating components of cardiovas-
cular disease.

Neurological and Psychiatric Applications

[0700] Neurological and psychiatric disorders are respon-
sible for about ten percent of deaths in the US. Neurode-
generative pathologies include Alzheimer’s disease, Parkin-

son’s disease and Huntington’s disease. Psychiatric
pathologies include schizophrenia, bipolar disorders,
depression and addiction.

[0701] Biomarkers involving Alzheimer’s disease are

identified that are upregulated (miR-502-3p, miR-206, miR-
132, miR-34c, miR-181c and miR-411) and downregulated
(miR-125b, miR-181¢c, miR-26b, miR-31, miR-146a, miR-
29¢-3, miR-19b-3p, miR-191-5p, miR-193bg, miR-34a-5p,
miR-15b-5p, miR-23a, miR-26b, miR-26a, miR-36b-5p,
miR-222 and miR-103). In addition, inflammatory biomark-
ers include IL-1b, sIL-1R1, sIL-1R3, IL-8, YKIL-40,
VCAM-1, ICAM-111.33, sST2, CCL2 and CXCL 12. Please
refer to FIG. 4.

[0702] Biomarkers for Parkinson’s disease indicate motor
disorder up to seven years before disease onset. These
biomarkers include Granulin precursor, Mannan-binding-
lectin-serine-peptidase-2, Endoplasmatic-reticulum-chaper-
one-BiP, Prostaglaindin-H2-D-isomaerase, Interceullular-
adhesion-molecule-1, Complement C3, Dickkopf-WNT-
signaling pathway-inhibitor-3 and Plasma-protease-C1-
inhibitor.

[0703] Biomarkers for Schizophrenia include I1L-6, IL-8,
CRP, IFN-y, IL-1B, IL-1RA, IL-4, 1IL10, IL-12, sIL-2R,
TGF-B, TNF-a, HVA, MHPG, KYNA, Glu, Gln, PUFAs,
BDNF, GWAS, DNV and PRS.

[0704] For the most part, these biomarkers provide diag-
nostic certitude. However, these biomarkers are also appli-
cable to diagnostic prognostics in estimating and projecting
the course of each disease. MMs are useful in analyzing
these biomarkers for diagnostics and diagnostic prognostics.

Oncology Applications

[0705] Cancer is the second leading cause of death in the
US. The top six solid tumor cancer types, in order of
incidence, are breast cancer, lung cancer, colorectal cancer,
pancreatic cancer, prostate cancer and melanoma. Please
refer to the discussion below regarding the application of
IMMs to metastatic cancer, which is responsible for 90% of
cancer deaths.
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[0706] Regarding breast cancer, some biomarkers indicate
overexpression in breast cancer patients, including miR-29a,
miR-146a, miR-373, miR589, miR-221/222 cluster, miR-9,
miR10b, miR-96, miR-181, miR-375, and miR-520c. Other
biomarkers identify upregulation (hsa circ 103110, hsa circ
104689 and hsa circ 104821) and downregulation (hsa circ
006054, hsa circ 100219 and hsa circ 406697).

[0707] Regarding lung cancer, some biomarkers are asso-
ciated with the presence of the disease (e.g., miR-21-5p,
miR-126-3p, miR-155-5p and miR-223-3p) and with a
3-year survival (miR-18a, miR-28-3p, miR-191, miR-145,
and miR-328). While one biomarker (miR-15v-5p) is asso-
ciated with overexpression, others (miR-19-3p, miR-92-3p,
miR-16-5p, miR-17b-5p and miR-20a-5p) are associated
with downregulation.

[0708] Regarding colorectal cancer, some biomarkers
(miRNA-146a, miRNA-128 miRNA-216a-5p miRNA-455
miRNA-214-3p, miRNA-455-5p, miRNA-30d-5p miRNA-
26b miRNA-145, miRNA-16-5p) are associated with the
presence of the disease, while others (MiR-21, miR-485-3p,
miR-4728-5p, miR-31, miR-223 and miR-92a) are associ-
ated with cell proliferation or inhibition.

[0709] Regarding pancreatic cancer, biomarkers (miR-
122-5p, miR-125b-5p, miR-192-5p, miR-193b-3p, miR-
221-3p, miR-27b-3p, miR-145, miR-150, miR-223, and
miR-636, miR-26b, miR-34a, miR-122, miR-126, miR-145,
miR-150, miR-223, miR-505, miR-636 and miR-885.5p) are
associated with the presence of the disease. One of the main
challenges of pancreatic cancer is the difficulty of timely
diagnosis. By the time most people are diagnosed, the cancer
has spread and has progressed to a terminal stage IV, leaving
a poor prognosis. This situation of late diagnosis illustrates
the need to identify methods for early detection, which RNA
biomarker analysis may well provide.

[0710] Regarding prostate cancer, biomarkers (miR-21,
miR-221, miR-1290 and miR-375) are associated with over-
expression of the disease while other biomarkers (miR-
4289, miR-326, miR-152-3p and miR-98-5p) indicate
upregulation. Additional biomarkers, such as long non-
coding RNA (PCA3, SChLLAP1 and PCAT1) are associated
with prognosis.

[0711] Regarding melanoma, various RNAs are associated
with melanoma proliferation (BANCR and CASC15) while
others are involved with (poor) prognosis (PRADC1, RCC1
and FKBP4). MMs are important in analyzing these bio-
markers for diagnostics and prognostics.

Individualized Medical Modeling for Diagnostic
Prognostics
[0712] The term “prognosis” derives from the Greek term

for “foreseeing” or “foreknowing.” A prognosis of a disease
refers to the probable progress of a disease, particularly
without (therapeutic) intervention. While a diagnosis of a
disease indicates where we are and where we have been, a
prognosis of a disease indicates where we are going. An
accurate diagnosis is critical to understanding the course of
a disease; therefore, a disease diagnosis establishes a starting
point. In general, the way to understand the progress of a
disease is to apply objective methods of evaluation, such as
imaging, digital tracking or molecular biomarkers. In a
sense, as the disease evolves, the diagnosis itself shifts in
such a way that the diagnostics is itself a moving target.
Tracking the changes in the evolution of a disease is
important to understanding its probable outcomes. In gen-
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eral, there are several different outcomes of a disease: a
complete cure (e.g., elimination of a head cold), the death of
the patient (e.g., some cancers), the cessation or limited
further evolution of a disease (e.g., LDL increase is offset by
a change in diet) and disease management (e.g., drugs
manage, but do not cure, the disease to reduce further
decline).

[0713] Most genetic-involved diseases are progressive. In
many cases, the affected genes in a disease encounter a
process of deterioration over time that increases the produc-
tion of abnormal proteins. The disease degradation tracks the
gene condition decline. The disease tracks dysfunctional
protein scenarios that manifest in escalating disease expres-
sions. In a microscopic sense, prognosis involves the track-
ing process of protein and cellular degradation. According to
this view, prognostics is the field that identifies phases in the
evolution of gene and RNA mutations or protein dysfunc-
tions and maps these deteriorating molecular and cellular
conditions on the evolution of a disease. Since tracking
molecular biomarkers are a critical method to understanding
a patient’s disease, measurement and analysis of the changes
of these biomarkers provides a critical qualitative analysis of
the evolution of the disease.

[0714] One of the main goals of prognostics is to develop
accurate predictions of the course of a disease. Yet, in order
to develop accurate predictions, we need more information
than merely biomarker data from a single patient. Patient
disease evolution data must be compared to a database of
other patient’s which have had a similar disease in order to
assess their probable course(s) of a disease’s development.
The patient’s disease is forecast based on a comparative
analysis of groups of other patients with similar profiles and
past similar diseases. The analogy is to actuarial charts in the
insurance industry in which aggregated data are compared to
individuals with similar profiles in order to assess the
probability of specific outcomes with similar conditions.
[0715] Amore pragmatic view of prognostics suggests a
multifactorial analysis to predict scenarios from different
situations that are not completely analogous. In addition to
genetic factors, there are broad differences among patients
involving environmental factors that may influence the
development of a disease. For instance, a disease may
evolve differently for a non-smoking vegetarian and for a
meat-eating smoker. There is a need to compare the patient
disease evolution data to an aggregated database of patients,
but the multifactorial analysis dimension elicits a broader set
of variables.

[0716] Diagnostic prognostics is related to diagnostics,
therapeutics and clinical trials. Prognostics is related to
diagnostics as diagnostics identifies a disease while prog-
noses measure and predict the disease’s evolution. Early
diagnostics of a disease may anticipate the emergence of a
disease even before symptoms appear and tracking the
predictions of the early diagnostic prognostics suggests the
materialization of a new field of preemptive medicine which
anticipates the development of diseases before symptoms
actually appear. Examples of these preemptive medicine
categories include arthritis or arteriosclerosis. Diagnostic
prognostics is applied to clinical trials since the control arm
of a drug trial can be represented as a set of virtual patients
that embody aggregated patient data. In the control arm of
a clinical trial, the patient disease evolves without interven-
tion. Finally, diagnostic prognostics is related to therapeutic
prognostics. Whereas diagnostic prognostics identifies the
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progress of a disease without medical intervention, thera-
peutic prognostics begins with the diagnostics model and
then applies different medical therapies, i.e., drugs, to iden-
tify whether the disease can be stopped or managed. In
therapeutic prognostics, the prognosis is updated in relation
to feedback from drug applications. Consequently, the
decline in patient condition associated with no treatment is
contrasted with the therapy options the addition of which
provide measurable benefits to the trajectory of the patient’s
disease evolution.

[0717] The present system develops a grading approach, a
“prognosis score,” in order to predict disease outcomes.
Emulating credit scores that predict an individual’s financial
performance, the prognosis score identifies, and projects, the
changes over time of a patient’s medical condition. The
scoring system is overlaid onto a 70-100 scale, with 100
being the highest, and healthiest, score and 70 being the
lowest and unhealthiest score. While, superficially, patient
symptoms can be a guide to anticipating patient health, this
primitive approach to estimating future pathology develop-
ment lacks empirical foundations. Rather, the scoring sys-
tem applies an analysis of biomarkers in order to evaluate
trends in the pathology data in order to probabilistically
anticipate changes in a patient’s condition over time. The
pathology can be mapped over time with different scenarios
based on the different possible inputs, such as patient
behavior or environmental changes. The patient scores can
be compared to other patient scores with similar diseases
and prognoses. The patient prognosis of disease is a moving
picture. The patient scoring changes over time when the
pathology data change; as new data are available, the
prognosis is updated to reflect the deterioration or improve-
ment of the patient condition. For instance, as the quantity
of biomarkers indicate the increased velocity of a disease
progression, the patient’s prognosis score is updated to
reflect this deterioration. The tracking of a patient’s disease
is analogized to the changes of public opinion in a poll as
new data influences and reflects the latest opinions.

[0718] IMMSs are applied to diagnostic prognostics to
model diseases by inputting biomarker and other medical
data and analyzing the medical data over time in order to
assess and predict the evolution of the patient’s disease.

Biomarker Analysis in IMMs for Prognostics

[0719] The prognosis of diseases is presented in MMs in
the context of predictive probabilistic scenarios. A MM may
provide a short-term outcome prediction and a long-term
outcome prediction under different conditions. MMs rely
primarily on an analysis of biomarkers in order to develop
accurate projections of disease prognostics. The biomarker
analysis enables insight into disease mechanisms. On one
level, the quantitative biomarker data show the simple
evolution of a disease. On another level, the qualitative
transformation in the degradation of biomarker (i.e., gene,
RNA, protein, lipid or small molecule) data reveals impor-
tant disease characteristics that inform the prognosis. In
effect, MMs track the progress of biomarkers as a proxy for
a disease (or diseases). The models build a picture of the
progress of the disease and make predictions from the model
based mainly on the biomarker analysis.

[0720] ML techniques are applied in MMs to analyze and
predict biomarker evolution. Identification of changes in
biomarker condition suggest the ability of the models to
ascertain different stages of a patient’s disease progress. In
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the case of cancer, there are several stages of a disease’s
evolution, wherein the compression between a second phase
and a fourth phase is increased. Therefore, there is an
increased need to identify the first stage diagnosis in order
to implement therapy so as to stop or slow the disease
progress. But the MMs can predict the intensity or aggres-
siveness of a disease’s progress given the biomarker data at
different points in time.

[0721] In a sense, the assessment of biomarker data is
simply a reference to snapshots in time of separate diagno-
ses. Comparing and analyzing these different snapshots
across time suggests our ability to develop a prognosis that
projects these trends into the future. Numerous biomarker
readings over time yield data sufficient to identify trends that
enable accurate predictions. For example, taking multiple
readings of PSA for prostate cancer can indicate a trend that
may portend probable outcomes; in some ways, the main
factor in this analysis is the quantity of the biomarker exuded
by the prostate gland that may indicate the phase of evolu-
tion of the disease.

[0722] MMs combine patient biomarker data with bio-
medical library data in order to compare the patient to
reference data. The MMs can also compare a patient’s
biomarker data to other patient’s pathology biomarker data
which are structured with disease outcome information. The
MMs apply a micro-prognostic analysis to assess the evo-
lution of molecular biomarkers. In an embodiment, the MMs
can predict the presence of a future biomarker that will
forecast a stage of the disease progress if later confirmed.

[0723] The MMs identify specific predictive biomarkers,
the presence of which may forecast a particular phase of the
evolution of a disease. The biomarkers are classified, sorted
and ranked in order to assess the relative weight and value
of particular biomarkers in making predictions about a
pathology. In some cases, a super-regulator biomarker is
identified that is useful in indicating the progress of a
disease. In other cases, targeting this super-regulator bio-
marker is critical to blocking the evolution of a disease;
generating a drug to target this biomarker is the key to
stopping the pathology. Biomarker analyses for a pathology
enables the matching of a pathology with drug therapy
options suggesting that biomarker analyses may be critical
for drug discovery.

In Silico Experiments for Diagnostic Prognostics in IMMs

[0724] MMs are useful for conducting in silico experi-
ments for prognostics. MMs track disease evolution by
analyzing biomarker conditions and expressions over time.
PHAs automate in silico experiments of biomarkers by
developing simulations from biomarker analytical data. Spe-
cifically, in silico experiments analyze protein-protein inter-
actions, protein-ligand interactions, protein-lipid interac-
tions and protein-small molecule interactions. MMs project
3D protein structure and function predictions by analyzing
biomarker data sets. Protein dysfunction data are modelled
in 3D and 4D, with 4D simulations estimating scenarios of
projected protein functions. In silico experiments enable
MMs to analyze biomarker data over time and to plot
scenarios of probable pathology behaviors.

[0725] Micro-prognostics analyses in MMs reveal protein
geometric structure predictions that delineate the protein
interactions in cellular pathways that generate and manifest
disease. In effect, mapping the degradation of protein struc-
ture reveals protein functional decay. From these models of
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protein dysfunction, the MMs reveal cellular mechanisms of
operation, from healthy to pathological. The patient’s
pathology analysis is contrasted to a healthy protein function
model. For instance, the MMs may compare the patient
aberrational biomarker data to a theoretical reference model
in a protein structure prediction LLM in order to show the
degradation of the patient’s protein biomarkers. From these
biomarker measurement data, the MM maps various predic-
tion scenarios based on multiple factors, including a stable
genetic mutation and environmental changes. By analyzing
biomarkers, in silico testing in MMs enable the prediction of
disease within a range of scenarios and probabilities. Intra-
cellular protein pathway behaviors are predicted from mul-
tiomics data analyses in MMs.

[0726] MMs and in silico analyses enable not only disease
progression analysis, but also drug-target prediction and
drug-disease prediction. In the case of drug-target predic-
tion, the biomarker analysis identifies the target sufficiently
to specify a drug tailored for that target. Even though a
pathology is a moving picture that changes over time, the
target, typically an abnormal protein, is specified as a focus
or objective of drug development. In the case of drug-
disease prediction, the disease evolution is tracked in such a
way as to identify a drug that will manage or cure the disease
at different stages of the disease’s progress. Drug reaction
simulations can be modelled in MMs.

Applications of ML and GenAl to Diagnostic Prognostics in
IMMs

[0727] 3D GDL is applied to prediction and forecasting of
protein dysfunctional states.

[0728] Variational autoencoders are applied to predict cell
states from compound attributes.

[0729] GDL, diffusion models and generative convolu-
tional NNs are applied to 3D protein structure prediction.
[0730] GDL is also applied to 3D analysis and prediction
of molecular structures.

[0731] Graph attention networks (GATSs) are applied to the
analysis and prediction of properties of molecules.

[0732] Graph NN are applied to problems associated with
the extraction of features from graphs to predict molecular
geometry. In some cases, graph nodes and edges are
weighted.

[0733] Graph convolutional NNs (GCNs) are applied to
predict molecular properties as well.

Individualized Medical Modeling for Therapeutics

[0734] The two main therapeutic modalities include tra-
ditional targeted drug discovery and novel synthetic drug
design. Both therapeutic modalities involve first identifying
a target, typically a protein, which a drug agent candidate
aims to resolve. Identifying with precision the molecular
pathways and targets of a disease are critical to developing
a drug that can act on the target.

[0735] For centuries, drugs were discovered by accident.
Typically, a chemical from a plant would be extracted to
solve a specific pathology. In some cases, a random drug
would be discovered first and then a search would be made
of its possible uses, effectively reversing the modern
approach of searching for solutions to pathology challenges.
Eventually, chemical extraction from plants established the
foundation for traditional pharmacology. The extraction of
pure chemicals from plants enabled the creation of drugs
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that could treat patient pathologies. For example, morphine
was extracted and purified from poppies or cocaine was
extracted and purified from coca.

[0736] But the deciphering of the human genome estab-
lished the fields of genomics, proteomics, metabolomics,
etc., and focused attention on molecular causes of many
diseases. The advent of microarrays and next generation
sequencing (NGS) enabled testing for DNA, RNA and
proteins that allow insight into gene variants and dysfunc-
tional proteins. Typically, small molecules are identified or
developed to match or solve a cellular pathology mecha-
nism. The goal is to search for a drug agent candidate to
modify the function of the affected target in order to reverse
a disease state or improve symptoms. The idea is to identify
small molecules that influence the behavior of proteins
(targets), that is, to interfere with the mechanism of dys-
functional proteins that characterize a disease state or to
initiate a specific biological process in the body.

[0737] The molecular target, generally a dysfunctional
protein or a set of proteins, is involved in a dysfunctional
cellular pathology mechanism. It is necessary to understand
the functional pathways of operation of the protein target as
it operates in the dysfunctional cellular pathology. The main
ways to understand the pathology pathway mechanisms and
their processes of dysfunctional operation are to run NGS or
high throughput screening (HTS) tests in order to track
dysfunctional biomarkers for a particular disease. The vali-
dation of dysfunctional biomarker candidates reveals the
operations of pathological cellular mechanisms.

[0738] Three examples of small molecules eliciting a
therapeutic reaction include enzyme inhibitors, receptor
agonist/antagonist and ion channel modulators. In the case
of enzyme inhibitors, enzymes (proteins) catalyze organic
chemical processes, with small molecules interfering with
the enzymatic responses. Statins are a class of enzyme
inhibitors, which block cholesterol generation in the liver. In
the case of receptor agonist/antagonist, small molecule
drugs interact with cell surface proteins such as agonists that
activate the receptor or antagonists that inhibit the binding of
the signaling process. In the case of ion channel modulators,
ion channels are proteins in cell membranes that regulate the
flow of ions in cells. Small molecule drugs can modulate the
opening and closing of the cellular regulatory channels.
[0739] Traditional drug discovery is a laborious process
involving the trial-and-error process of discovery coupled
with the intensive process of testing many chemical com-
pounds for efficacy. In many ways, modern drug discovery
merely automates and accelerates the traditional drug dis-
covery model by applying HTS and chemical assays to
identify and test many chemical compounds in a limited
time. Drug candidates are screened, tested and eventually
winnowed in drug clinical trials.

[0740] Modern drug discovery focuses on two main
classes of drugs: Small molecules and biologicals. Small
molecules, which comprise about 80% of approved medi-
cines, are typically synthetic chemical compounds. Biologi-
cals include recombinant proteins, antibodies, long peptides,
genes, RNAs and vaccines.

[0741] Once drug candidates are identified in medical
research, they are tested in pre-clinical approaches. These
basic research or pre-clinical testing phases of drug testing
include in vitro (tested in a test tube), ex vivo (tested in
tissues or organs), in vivo (tested in a living organism such
as mice, rats, dogs or pigs) or in silico (tested in a computer).
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Once a drug candidate passes these pre-clinical testing
phases, it passes from drug discovery to drug development
as the drug candidate initiates drug clinical trials. The basic
research phase of drug discovery and the pre-clinical phases
of drug development could collectively take a decade, with
only about twenty percent surviving the gauntlet.

[0742] Even when the surviving drug candidates enter
clinical trials, which typically consist of three phases of
random blind studies, only about ten percent of drug can-
didates survive to the point of FDA approval. The average
period from drug discovery to drug approval is 10-15 years
and about $2.5B. A drug discovered today may be approved
in over a decade at a cost of over $4B. This process begs for
a simpler, more targeted, cost-effective and quicker method
of drug discovery and development. MMs, ML and GenAl
will likely revolutionize these processes in the next genera-
tion.

Personalized Medicine with IMMs Applied to Drug Discov-
ery

[0743] Personalized medicine endeavors to identify the
precise pathology of a patient on a genetic or molecular
level. Typically, genetic mutations or RNA aberrations gen-
erate dysfunctional proteins that cause or express a pathol-
ogy. An assessment of a patient’s molecular biomarkers can
identify the precise combination of abnormal proteins that
generate the pathology. By identifying these dysfunctional
proteins, we not only identify the precise patient pathology
diagnosis, but also accurately identify the protein targets on
which we can focus a medicinal solution.

[0744] MMs, in combination with ML and GenAl, are
well suited to understand the patient pathology by identify-
ing the unique combination of biomarkers that signify
genetic mutations, RNA aberrations and dysfunctional pro-
teins. These aberrant proteins become targets for drug dis-
covery. The MM represents an intermediary analytical phase
in a personalized drug therapy development, between the
collection and analysis of empirical biomedical data (bio-
marker data), which data and analysis are crucial in order to
identify and understand the nature of the patient disease, on
the one hand, and to identify therapeutic drug options, on the
other, that will cure or manage the disease.

[0745] In a sense, the protein targets represent multi-
objective optimization problems, the solutions of which are
drug therapies. The MMs generate solution options for the
multi-objective optimization problems by analyzing the pro-
tein targets.

[0746] Once a patient’s protein targets are identified, the
MMs search drug libraries and protein databases to identify
drug candidate solutions. MMs apply ML to analyze the
drug candidate options and to identify similar protein tar-
gets. The MMs select drug candidates in order to test against
the protein targets. The MMs predict drug candidate effects,
including potential adverse side effects, as applied to the
protein targets.

[0747] The MMs search for alternative solutions than
small molecules, including biologicals such as antibodies,
recombinant proteins, RNA or long peptides. The MMs
apply ML to analyze these drug candidate options against
protein targets.

[0748] Ideally, the MMs identify an existing drug therapy
for a unique patient pathology. The ability to match indi-
vidual patient proteomic pathology to an existing targeted
drug therapy is useful.
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[0749] The selected drug candidates are scored for differ-
ent probable medicinal solutions for each pathology by the
MM. The MM selects the best medicine option based on the
probability score and then ranks the drug options to solve the
medical problem.

[0750] The MM will map the protein pathway and show
the effects of a dysfunctional protein. The MM will show
how different drug candidates will act in the dysfunctional
model with different levels of therapeutic benefits. The
details of a patient pathology, including genetic, RNA,
proteomic and metabolomic dysfunctional details, are
mapped so one can compare the dysfunctional model to a
healthy patient model.

[0751] MMs enable the focusing of the drug discovery
process. The process begins with the discovery of the
genetic, RNA and protein source of a pathology, which
represents a precise diagnosis. From this understanding of
identification of protein targets, drug therapy options are
generated, selected and tested. ML and GenAl are applied to
predict probable outcomes of different drug candidate
options. For instance, different drug types can target differ-
ent kinds of genetic mutations of similar genes that generate
differentiated dysfunctional proteins. MMs also identify
optimum drug dosage and drug timing (i.e., drug release
characteristics) by simulating, predicting and optimizing
drug delivery mechanisms.

[0752] In an embodiment of the invention, MMs predict
drug toxicity by analyzing drug candidate interaction in
protein pathway cellular operations.

[0753] IMMs and In Silico Laboratory: Drug Discovery
Modeling and Experiments

[0754] In silico experimentation enables computational
drug testing in IMMs.

[0755] Modern drug discovery is accelerated by in silico
experimentation and testing in MMs. Drug candidates are
identified by matching protein targets with viable drug
agents. MMs accelerate drug candidate assessment by con-
firming the optimum fit of drug agent candidates with
protein targets in the context of an analysis of dysfunctional
protein interactions in protein pathways and cellular mecha-
nisms. The MMs generate optimal drug agent candidates and
narrow the list of prospective candidates by removing those
that lack probable protein interaction or protein pathway
matches.

[0756] MMs analyze a patient pathology, including gene
mutations, abnormal RNAs and dysfunctional proteins.
Once the pathology is diagnosed on a molecular level, the
MMs can tailor a unique drug protocol to the patient disease
by searching drug libraries and protein databases in order to
find suitable drug candidates to solve the patient’s pathol-
ogy.

[0757] The MMs employ an in silico laboratory by utiliz-
ing computer-aided drug design (CADD) and modeling drug
experiments to search for and test specific drug candidates.
MMs predict the outcomes of application of different drug
candidates to the patient pathology by analyzing the appli-
cation of different drug candidates on different instantiations
of the dysfunctional proteins at the source of the pathology.
In effect, the MMs construct a hypothesis, or set of hypoth-
eses, which are tested by actively testing different candidate
drug options on the patient’s identified dysfunctional pro-
teins. In a sense, the MMs reverse engineer protein structure
solutions to the dysfunctional proteins by starting the pro-
cess of finding solutions to the core problem of the protein
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target. One set of hypotheses may be to develop a drug to
block the dysfunctional protein target. Another set of
hypotheses may be to correct, enhance or improve (i.e., fix)
the dysfunctional protein target. Still another set of hypoth-
eses may be to bypass the dysfunctional protein target. Each
of these experiments seek out different therapeutic solution
modalities to address the patient pathology.

[0758] Beyond the purely personalized medicine model
that seeks a unique drug therapy to a unique patient pathol-
ogy that may consist of a limited set of mutated genes or
aberrant proteins, the MMs may also be applied to gener-
alized precision medicine in which we address a typology of
a pathology that clusters of patients share with similar,
though not exact, pathology features. Solutions to a gener-
alized precision medicine model are capable of clinical trials
on a wider population than a very refined set of patients with
radically unique pathology features. In such a case, the MMs
search for drug therapy candidates that multiple patients
target with similar, though not exactly the same, protein
targets. The MMs apply ML to identify clusters of patients
with similar pathologies and molecular aberrations, with an
aim to search for common solutions to the shared patholo-
gies.

[0759] While drugs are discovered and developed in the
MM system, they are tested on another level.

[0760] MDMs test drug-target interactions and drug-disease
reactions. In the case of drug-target interactions, the MMs
run in silico experiments to identify, test and select the best
drug candidates. In silico experiments can analyze drug
binding and molecular docking probabilities of different
drug candidates. In many cases, the drug candidates do not
satisfy the criteria of omitting toxicity and side effects. In
other cases, the drug candidates do not solve the problems
associated with the pathology protein pathways in intracel-
lular networks. While drug candidates can emulate protein
interactions and target reactions in a computer, it may still be
necessary to test drug candidates in vivo.

[0761] VAEs, ML and GenAl are applied in MMs to
predict drug reactions with diseases. These ML analyses of
drug reactions with diseases reveal broader parameters than
exist in drug-target interactions alone, much as a macro
analysis is broader and more systematic than a micro analy-
sis.

[0762] In some respects, the concept of therapy is itself a
sort of experiment in search of a solution. The diagnosis of
a disease presents a puzzle with incomplete information, the
completion of which is considered a therapeutic solution.
The application of a drug therapy option requires constant
reassessment of a patient’s condition as new feedback
informs the next stage of therapy options. In the context of
this process, MMs are useful tools that process information
from obtaining data on a precise diagnosis to searching for
and testing drug candidates that may solve the patient
pathology. The MMs are uniquely suited to understand and
map the protein interactions and protein pathways of unique
dysfunctional proteins’ effects on intracellular functionality
as well as the drug operational pathway and optimal drug-
target and drug-disease interactions. MMs are well suited to
perfecting each phase of drug development and refinement
of each unique therapy.

[0763] Since there are different therapeutic modalities,
MMs are available to track the different approaches. These
therapies include small molecule, ligand, recombinant pro-
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teins, antibodies, siRNAs, long peptides, vaccines and gene
editing approaches. Each of these therapeutic modalities
may be tested in MMs.

Application of ML and GenAlI to Therapeutics Drug Dis-
covery with IMMs

[0764] VAEs are applied to generate a chemical compound
search space to show compound library diversity in MMs.
[0765] Machine learning is useful to generate, identify and
select drug candidates. ML is also useful for drug candidate
validation, that is, to confirm that a drug is applied to a drug
target. ML is applied to drug dose, drug timing, drug side
effects and drug-drug interaction analyses as well. ML is
applied to statistical ranking of probability of the fit of a drug
relative to a particular protein target.

Novel Synthetic Drug Design with Individualized Medical
Modeling

[0766] Macro indicators of disease manifest as symptoms.
Yet, as traditional medicine treats the symptoms, we are no
closer to solving the problems associated with a disease.
Rather, since the sources of many diseases lie on the
molecular level of gene variants, abnormal RNA and dys-
functional proteins, it is necessary to address the molecular
causes of the diseases. The tools of advanced medicine
enable us to view in detail the molecular problems associ-
ated with diseases, the sources of which can now be
addressed by applying novel therapeutics modalities.
[0767] IMMs are a critical component of the toolkit to
assist in the identification of a patient’s genetic mutations,
aberrant RNA and dysfunctional proteins. MMs provide
modeling capabilities to view the intracellular protein path-
way mechanics of a unique disease. The advent of MMs
enables a revolution in personalized medicine not only in the
capacity to identify the sources of disease but also in
presenting novel solutions that may treat diseases. Two key
elements that allow MMs to identify both disease problems
and solutions are the availability of molecular data on a
disease’s abnormal gene, RNA and protein states and the
availability of advanced computational technologies in the
form of Al and ML.

[0768] For the most part, Al and ML applies to MMs in
two main ways. First, Al and ML supply descriptive capa-
bilities in order to understand the anatomical and physi-
ological descriptions of the molecular or cellular character-
istics of a disease. Second, Al and ML supply prescriptive
capabilities in the power to configure, or to generate, novel
solutions to a molecular or cellular dysfunction. While the
former, descriptive, capability is critical for diagnostics, the
latter, prescriptive, capability is critical to enable a new
generation of therapeutics.

[0769] Al and ML algorithms can be configured to design
novel synthetic proteins as a solution to a diagnostic chal-
lenge. Specifically, Al and ML techniques are applied to
design a unique protein solution for a unique patient pathol-
ogy. While Al and ML are applied to solve novel therapeutic
challenges, MMs are applied to design and test these novel
protein solutions in silico.

[0770] The first step in a therapeutic challenge is to
identify a pathology problem, viz., to precisely diagnose a
disease on a molecular level, most notably to identify
genetic mutations, abnormal RNA and abnormal or dysfunc-
tional proteins. From the identification of the underlying
disease molecular dysfunctions, the MMs identify a protein
target or targets that represent the source of the disease.
Identification of a patient’s biomarkers supplies evidence
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towards the goal of describing the patient’s disease targets,
typically a dysfunctional protein. In addition, MMs identify
and map out the mechanisms of intracellular pathways of the
dysfunctional proteins. These dysfunctional protein pathway
maps verify the protein target. Furthermore, MMs identify
the precise geometry of dysfunctional proteins. Geometric
deep learning (GDL) algorithms, several classes of which
are specified in FIG. 2, are applied in order to understand the
geometrical configurations of dysfunctional proteins. These
analyses are critical to supplying a precise diagnosis of the
molecular sources of a disease. One cannot find a drug to
treat a disease without first identifying the disease protein
target that it is required to address. While biomarkers
provide clues to disease targets, it is necessary, in an
embodiment, to design tracker proteins that test an individu-
al’s protein pathways in order to trace the sources of a
disease.

[0771] There are times when an existing drug can be
applied to the protein target in order to cure or manage the
disease. However, many drugs are small molecule chemical
compounds that are not precisely targeted to a particular
protein target, but, rather, present with numerous unintended
side effects and toxicity. In many cases, the cure may be
worse than the disease when the applied drug misses the
mark by presenting with many unwanted side effects.
[0772] Rather than seeking existing drugs that may not
precisely target the disease, an optimal therapeutic modality
is to custom design a drug for the patient’s specific protein
targets. This therapeutic modality requires inventing a novel
synthetic protein in order to precisely target a specific
dysfunctional protein or proteins. Such a model represents
the ideal of personalized medicine by optimizing the
approach of finding a precise drug treatment to a unique
patient disease.

[0773] Large language models (LLMs) have been applied
to solving complex problems by analyzing and training vast
data sets and inferring new data in order to solve a prompt
within specific parameters. LLMs are applied to protein
structure prediction. For example, AlphaFold 3 (by applying
multiple sequence alignment (MSA) algorithms in which a
protein sequence is compared to similar proteins to deduce
its structure) has solved the protein folding problem of
accurately predicting protein structures from amino acid
sequences. While this is interesting in predicting protein
structures from amino acid sequences, these technologies
are primarily descriptive in their ability to mainly elucidate
protein structural properties.

[0774] Protein language models (PLMs), however, are
configured to take this process one step further by actually
designing novel protein structures. PLMs, such as Salesforce
Research’s 1.2B parameter ProGen, train on protein data-
bases. By analyzing hundreds of thousands of actual protein
structure configurations, these PLMs are programmed to
generate specific novel protein structures on demand. By so
configuring novel synthetic protein structures, these PLMs
can develop a novel protein to match a dysfunctional protein
target. Similarly, when a gene mutation is identified that
produces a dysfunctional protein, a PLM can generate a
novel synthetic small molecule design in order to apply to
treat protein targets in dysfunctional cells. These PLMs
apply a class of GenAl algorithms to generate novel drugs
to solve the puzzle of matching a target. The custom novel
drug design is analogized to finding a unique synthetic key
to a unique protein target lock. This new generation of
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technologies endeavors to solve difficult and unique patient
disease challenges with customized molecular solutions by
applying Al and ML algorithms.

[0775] In some ways, this new approach to novel drug
design involves two sets of Al and ML. In the first case,
GDL is applied to analyze a protein target in order to
carefully describe its geometry. In the second case, GenAl is
applied to reverse engineer a custom design drug solution
from the protein target geometry. Application of these tech-
nologies represents a new paradigm in medicine.

[0776] The process of designing a novel synthetic drug
takes several steps. First, a disease target, typically a dys-
functional protein, is identified and described. Second, MMs
configure a novel drug candidate design to address the
disease target. Third, MMs predict the binding of the new
drug candidate with the disease target. Fourth, MMs predict
drug effects in solving the patient’s disease. Fifth, in silico
drug testing confirm the efficacy of the drug’s effects on the
disease. Finally, the novel drug candidates are tested in
clinical trials. Al and ML techniques are applied at all stages
of this process of searching for custom drug solutions to a
unique patient disease.

[0777] While GDL is applied to describing the geometry
of the dysfunctional protein target, generative GDL
(GenGDL) is applied to designing a novel synthetic drug. In
some cases, 3D GDL is a more precise approach to protein
structural geometrical description, mainly applying 3D
graph modeling approaches. Similarly, generative 3D graph
techniques are specified to generate accurate solutions for
novel synthetic drug designs in order to optimally fit dys-
functional protein targets.

[0778] GenAl including GenGDL, can design different
kinds of novel drug therapies. These different drug therapies
include novel proteins, novel RNA (e.g., siRNA) sequences,
novel ligands, novel antibodies, novel small molecules and
novel enzymes. Each type of drug therapy requires a dif-
ferent specialized database of biological or chemical types in
order to inform and train the different specialized types of
LLMs or PLMs.

[0779] Antibody-specific protein LLMs (AbLMs) require
antibody databases (such as iReceptor or Observed Antibody
Space (OAS)) to train general antibody data, antibody-
antigen pair data, paired-chain antibody sequence data and
natural antibody data. There are about a dozen AbLMs.
Since antibodies are critical configurable proteins that inter-
act with antigens and behave as a lock and key, antibody
targets are exemplar for novel synthetic drug design. The
MMs apply GenAl and GenGDL to construct a novel
antibody to solve a protein or antigen disease target problem.
[0780] Since siRNA sequences configure 3D protein struc-
tures, after identification of a protein target, MMs can apply
GenAl or GenGDL to reverse engineer an siRNA code to
apply to a unique protein target or to block the target.
Similarly, novel ligands may be precisely designed with
GenAl or GenGDL to block a protein component in a target.
Novel enzymes are also configured with GAN or GenGDL
algorithms by MMs in order to apply to protein targets in
order to catalyze or block a natural enzymatic process in an
intracellular protein pathway.

[0781] One advantage of designing a novel protein drug
solution is the ability to configure a protein structure to
correspond to specific properties. In other words, it is
optimal to design a novel synthetic drug with preferred
parameters. Alternatively, the traditional drug discovery
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model tests many random molecules with different structural
attributes. With the opportunity to design a novel synthetic
drug to match a specific protein target, the drug structural
properties relative to the target structural properties are
optimized. In this sense, the drug-target interactive attributes
are optimized in the novel design model relative to the
traditional drug discovery approach.

[0782] MMs enable the prediction of drug properties in the
interaction of a drug candidate and protein target. MMs
describe and predict the binding of a protein target and an
optimized novel synthetic drug design. For instance, when a
MM reverse engineers a novel drug from a protein target, the
model analyzes the amino acid sequences and peptide con-
figurations in order to develop an optimized novel synthetic
drug chemical structure. An advantage of de novo design
methodologies of a synthetic drug is the precise configura-
tion of a drug to fit a protein target so as to minimize side
effect interactions with non-target proteins.

[0783] In an embodiment of the invention, MMs apply
GenAl and GenGDL for novel design of customized syn-
thetic biologics. These biologic therapeutic modalities
include recombinant DNA, recombinant therapeutic pro-
teins, monoclonal antibodies, vaccines, TNF inhibitors, JAK
inhibitors, IL inhibitors, SiP modulators and anti-adhesion
molecules. Biologics have application to genetic diseases,
cancer and autoimmune disorders.

[0784] MMs are uniquely suited to manage all stages of
the disease discovery process, the therapeutics drug discov-
ery and design process and the drug testing process. MMs
provide simulations of functional transcription processes,
translation processes, structural protein development pro-
cesses, functional protein behavior and interaction pro-
cesses, molecular (ligand) binding and docking processes,
protein-protein interactions, protein-lipid interactions, intra-
cellular behaviors and intercellular behaviors. These models
and sims are driven by Al and ML algorithms in order to
characterize these object relations as 3D- and 4D-spatio-
temporal representations. In many cases, the MMs compare
patient dysfunctional molecular and cellular processes to
healthy reference databases.

[0785] The MMs conduct in silico experiments that
include descriptive simulations and hypothesis testing in
order to precisely identify and describe diagnostic chal-
lenges, to predict scenarios of diagnostic prognostics, to
identify or design precise therapeutics drugs and to predict
the probable scenarios of therapeutic prognostics.

[0786] In an embodiment, PHAs are applied to design,
collect data for and conduct in silico experiments. PHAs are
endowed with Al and ML algorithms in order to analyze
diagnostic, therapeutic and prognostic features. PHAs can
conduct autonomous experiments in MMs, including paral-
lel simultaneous diagnostic, therapeutic and prognostic
analyses. PHAs are, consequently, the workhorses of MM
laboratories that solve problems and build models. PHAs
draw on biological and chemical databases, specialized
LLMs, patient biomarker, empirical biological data and Al
and ML techniques in order to build personalized medicine
models, precisely describe patient diseases on a molecular
level, predict disease evolution scenarios and accurately
solve therapeutic challenges for each patient by designing
novel synthetic drugs.
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Applications of ML, and GenAl to Novel Synthetic Drug
Design with IMMs

[0787] GenAl is applied to novel synthetic drug design.
Generative adversarial networks (GANs) are applied to the
design of novel molecules and the configuration of novel
protein and peptide designs. Natural language processing
(NLP) is applied to de novo target-specific drug compound
design. Generative pre-trained transformers (GPTs) design
proteins with targeted properties. Generative graph neural
networks (GGNNs) generate novel molecules to accelerate
drug design, predict drug-target interactions and forecast
drug-drug interaction events. Generative convolutional NNs
(GCNNS) design novel proteins and predict protein-ligand
interactions and protein-protein interactions. GGNNs and
GCNNs are examples of GenGDL.

[0788] Generative 3D graph neural networks (3D-GG-
NNs) generate novel synthetic 3D proteins with particular
attributes, process 3D graph structured data to predict drug-
target interactions in 4D model simulations and identify and
forecast drug-drug interaction events in 4D model simula-
tions. 3D-GGNNSs also identify and predict drug binding to
protein-ligand sites in 3D and 4D models and sims and
predict protein-molecule interactions in 4D model simula-
tions.

[0789] Generative 3D convolutional neural networks (3D-
GCNNs) design novel synthetic 3D proteins with well-
defined properties and predict functional protein-protein
interactions and functional protein-ligand interaction predic-
tion in 4D model simulations.

[0790] Generative 3D graph attention networks (3D-
GGATs) generate novel synthetic 3D proteins with identi-
fiable characteristics and predict 3D protein attributes from
weighted values in 3D graphs. 3D-GGATs also predict 3D
protein geometry in 4D model simulations from extracted
features.

[0791] Generative 3D manifold valued neural networks
(3D-GMVNs) generate novel synthetic 3D proteins with
unique features. 3D-GMVNs also model protein structures
and attributes and provide 4D model simulations of non-
Euclidean protein-protein and protein-ligand interactions.
[0792] Please refer to FIGS. 2 and 5 for a list of GenAl,
GDL, GenGDL, 3D GDL and 3D GenGDL techniques and
applications to biomedicine.

Individualized Medical Models for Therapeutic Prognostics

[0793] Diagnostic prognostics is the art and science of
projecting or predicting the progress of the course of a
disease without therapeutic intervention. A prognosis eluci-
dates the actual patient condition and the expected progress
of a patient medical state in the future from an understanding
of the patient condition. Therapeutic prognostics, on the
other hand, seeks to project or predict the progress of a
disease with therapeutic, typically a drug, intervention. The
therapy prognosis estimates the progress of a disease state in
light of therapeutic inputs on a disease. The main idea is to
predict the effectiveness of a drug on the improvement of the
course of a disease. A corollary of the main idea states that
instead of a drug input, an environmental change or feed-
back can alter the course of a disease. For example, if a
patient quits smoking, a disease may be minimized without
drug intervention.

[0794] There are two main approaches to therapeutic
prognostics, viz., the descriptive and the predictive. In the
descriptive approach, a disease progress is tracked in light of
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different drug options, identifying changes in disease prog-
ress with different drug option scenarios. In the predictive
approach, a drug effect on a disease progress is predicted. In
the case of prediction, we need information on the aggre-
gated history of similar patient diseases and evidence of
drug effects on diseases. With more precision, we can more
readily predict a drug’s effect on a disease when we have
identified a close match of a genetic mutation to a tailored
drug so as to identify the drug’s fit to the molecular
configuration of a disease.

[0795] Therapeutic prognostics can thus be seen as under-
standing a disease evolution in light of different drug treat-
ment options. Therapeutic prognostics maps possible drug
inputs to treat a disease over time.

[0796] The stratification of prognostics reveals therapies
that closely match genetic mutations or abnormal protein
targets generated from these genetic mutations. For
example, a drug may have different reactions in patients with
different genetic profiles.

[0797] Drug reaction probabilities can be predicted in
various scenarios to track the evolution of a disease with
various therapy inputs.

[0798] MMs are applied to analyze patient prospective
disease states of evolution without drug therapy intervention
and with drug reactions. The MMs analyze a patient’s
genetic profile and estimates the prospective reaction of a
patient’s disease to application of particular drugs on the
disease. In one analysis, the MMs analyze the difference
between the prospective progress of a patient’s disease
without intervention and the expected progress of the
patient’s disease with application of a particular drug or
drugs. In the case of a targeted therapy, the prognosis
accounts for a delineation of the patient’s genetic and
proteomic profile to understand the underlying characteriza-
tion of a disease and the specific targeted drug therapy
expected to alter the particular disease.

[0799] Overall, the MMs are important in identifying the
patient’s disease diagnosis on a molecular level, particularly
genetic mutations or an abnormal protein target. In addition,
the MMs analyze the patient’s disease to identify a target
and develop a small molecular chemical to fit the protein
target or to design a novel synthetic protein or biologic to fit
the protein target. Once the patient’s genetic, protein and
molecular profile is analyzed, the MMs estimate the prog-
ress of the patient’s disease without intervention as well as
with application of a particular proposed drug candidate
solution. In order to further the therapy towards an optimal
solution, the MMs track the disease progress by analytically
comparing at least two drug interventions and developing
disease scenarios with prospective reactions to the different
drug options.

Biomarkers in Therapeutics Prediction with Feedback
[0800] Both genetic and imaging biomarkers are useful in
order to assess the progress of a disease. In cancer prognosis,
for example, imaging biomarkers are important for an
assessment of the progress of solid tumors. When a drug
protocol shrinks tumors imaging biomarkers detect the
changes to these tumors and indicate the positive impact of
the therapy. While imaging biomarkers are useful indicators
of disease progress, our main focus is on molecular bio-
markers as tangible evidence of changes in a patient’s
disease evolution. Cancer biomarkers from tumor biopsies
and liquid biopsies also provide tumor markers to enable
precise drug treatments tailored to genetic mutations.
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[0801] Genetic biomarkers, which are gene variations
showing a pathology risk, pathology development and drug
impact on a disease, are useful in therapeutic prognostics.
Genetic biomarkers, and by inference, RNA and protein
biomarkers, can be useful in enabling the prediction of a
drug response outcome on a disease. For example, genetic
biomarkers can be useful in showing minimal drug adverse
reactions, drug interactions or drug side effects. In general,
genetic biomarkers represent an optimal tool for illustrating
pharmacodynamics of the feedback of drug therapies on the
progress of a disease.

[0802] Molecular biomarkers are essential in providing
information about a patient’s disease diagnosis. The exis-
tence of specific biomarkers provides clues to protein aber-
rations which cause disease states. These abnormal proteins,
often a product of a genetic variance, are disease targets to
which therapies are developed and matched. Beyond the
diagnosis, tracking the evolution of the condition of these
biomarkers are useful for an understanding of diagnostic
prognostics, viz., the actual or expected evolution of disease
states as the pathology progresses over time. These molecu-
lar biomarkers then become critical beacons of evidence of
the disease condition over time as well as beacons of
evidence of the improvement of the disease states with the
intervention of specific therapeutic drug applications to the
protein target. If the disease’s adverse evolution can be
blocked by application of a targeted drug, the biomarker
analysis can assess the value of the targeted therapeutic drug
intervention. In addition to being useful for the assessment
of disease states over time, biomarkers are also useful to
signal a need to modify or adjust a drug intervention,
particularly if the expected benefits of a targeted drug
application are suboptimal. But the assessment of biomark-
ers is crucial to providing an empirical tool in order to
understand the evolution of a disease and an assessment of
the value of a drug therapy.

[0803] MMs are useful for analysis of these biomarkers
across the pathology spectrum from diagnosis to therapy
option applications to therapeutic prognostics.

[0804] Not all therapies work well. Biomarker data and
biomarker analyses in MMs enable the constant updating of
therapy drug options with the latest biomarker data. This
process of continual biomarker assessment across the life
cycle of a pathology shows the ability of MMs to track,
update and adapt therapeutic options as the demands for
changes to the therapy are required over time. For instance,
early treatment progress may reveal a good fit of a small
molecule drug to stop the progress of a disease, but a later
analysis of biomarkers in a later phase of the disease may
reveal a need to apply a novel synthetic designed drug to
optimize the solution to an evolved pathology state. This
iterative adaptation of the therapeutic protocol requires a
MM analysis of the evolving character of biomarkers over
multiple phases of pathology development.

[0805] Updated biomarker information about a patient’s
pathology over time enables feedback evidence about a drug
application to a particular protein target. The most recent
biomarker data informs the MM analysis which selects an
alternative drug therapy to fit the pathology vector change.
Not only do biomarkers provide a diagnostic assessment of
a patient’s condition at a particular time, but the biomarkers
inform MMs with an assessment of a drug’s effect. Bio-
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marker assessments reveal a therapy prognosis over time as
a series of multiple snapshots that comprise a moving
picture of the disease.

[0806] MMs identify the genetic mutations at the source of
a disease, the abnormal RNA and proteins that manifest from
the genetic variances, the protein targets to which drug
therapies are directed and the continuing state of a patient’s
pathology over time. MMs are useful for predicting drug
candidate performance for a protein target fit. In addition,
the MMs can map the mechanics of cellular protein path-
ways in both healthy and dysfunctional pathways. The
molecular biomarkers represent critical empirical evidence
to understand these underlying molecular elements that
characterize a patient’s disease.

[0807] MMs also predict the likelihood of the effective-
ness of a targeted drug from an assessment of biomarkers
data. MMs identify the quality of the fit of a drug candidate
to a target and the fit of a drug candidate to a disease. MMs
map the potentialities of a drug’s effects on a disease. For
example, a model estimates the percentage probabilities of
the effectiveness of a drug candidate on different disease and
genetic profiles.

[0808] In addition, MMs can estimate the potentialities of
drug interactions and drug side effects under different con-
ditions. Side effects are typically (unintended) off-target
effects of a drug therapy, some of which are predictable.
Some adverse drug interactions are also predictable.
[0809] MMs are applied to tracking complex multivariate
disease scenarios. MMs can solve the problem of multivari-
ate diseases which require the tracking of two or more drug
inputs in complex diseases.

[0810] MMs can compare different prognostics situations.
MMs can compare diagnostic prognostics without interven-
tion to therapeutic prognostics with a specific drug therapy
targeting a specific drug target. We realize that the diagnostic
prognostics without intervention depicts a raw disease that
will show progression without any prospective therapy. The
gap between a therapeutical option and no applied therapy
can be substantial, which the model’s main scenarios of
pathology evolution reveals. These differences in predicted
trajectories with and without therapeutic intervention can be
plotted on a graph. Similarly, the MMs may use the diag-
nostic prognosis as a control while proposing two different
therapeutic options, which are then mapped to show the
predicted differentiated evolutionary developments of the
patient’s pathology over time in order to propose an opti-
mum drug therapy. The multiple therapy options can be
assessed in the MM by developing a table of drug therapy
options that are ranked according to a match of the patient’s
profile. In an embodiment, these different therapy options
can be viewed as comparative predictive trajectories plotted
on a graph. The MMs can then predict the various therapy
options based on their analysis of the patient’s pathology
condition, evolving biomarkers and therapy candidate
options. In another embodiment of the invention, a MM can
design a novel synthetic drug therapy for a specific patient
genetic profile in order to match a patient protein target with
the model comparing various drug therapy options, the
optimized and preferred novel synthetic drug therapy option
and the control case of lack of any therapeutic intervention.
These predictions and options are then presented to the
patient’s physician as therapeutic preferences.

[0811] Therapeutic prognostics can predict patient
responses to different treatments by applying IMMs to
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analyze specific patient biomarkers that indicate specific
protein targets and then by evaluating different treatment
options relative to the probability of success in addressing
these targets. In this way, MMs can predict treatment
responses. Similarly, MMs can identify biomarkers that
match a particular therapy protocol that is targeted to these
biomarkers in order to predict a successful therapeutic
application.

[0812] As the patient disease progresses along a time
series with application of various drug therapies, the updated
disease status is revealed in biomarker collection and analy-
sis in the MMs in order to identify the patient’s most recent
disease condition in the context of the specific treatment.
The updated biomarker data indicating the patient pathology
condition is then evaluated in order to consider updating the
patient medication. The physician will review the MM and
assess alternative drug therapy options in light of the most
recent observations of the status of the patient’s disease.
[0813] The prognostics scoring system is useful in the
therapeutic prognostics context. Whereas in the case of a
diagnostic prognostics in which the disease progresses with-
out intervention, the pathology trajectory is generally down-
ward precisely because of the lack of therapeutic options,
while in the case of therapeutic prognostics the goal of
applying therapy options is to manage or reverse the pathol-
ogy. Consequently, in the context of prognostics scoring, the
likelihood of improvement increases when measuring the
application of therapy options vis-a-vis no therapeutic inter-
vention optionality. These improvements in patient condi-
tions are reflected in the prognostics score.

Applications of ML and GenAl to Therapeutic Prognostics
in IMMs

[0814] RBMs are applied to predict drug-target interac-
tions. RBMs are also applied to forecast drug-disease rela-
tions and to identify drug repositioning tasks in drug-disease
relation networks.

[0815] Generative GNNs are applied to predict drug-target
interactions with graph structured data. In addition, GNNs
are applied to forecast and identify drug-drug interaction
events.

[0816] NLP is applied to forecast and classify drug-target
interactions.

Applications of Individualized Medical Modeling System

[0817] There are numerous biomedical applications of the
IMM system. Critical medical challenges include cardiovas-
cular disease, neurodegenerative disease, cancer, metabolic
diseases and orphan, rare or genetic diseases. Each of these
medical categories is well-suited to applications of IMMs.
Many diseases, perhaps as many as 90% of human diseases,
have a genetic component or a complex genetic-epigenetic
dynamic interaction, that require personalized analysis and
treatment of each individual’s disease. The emergence of
precision medicine has grown with the increase in knowl-
edge of the human genome, proteomics and our understand-
ing of the molecular sources of disease. Converging with our
theoretical understanding of disease, which includes the
ability to gather empirical evidence from genomic, RNA and
proteomic testing, is the development of a new generation of
advanced sequencing tools that analyze biomolecular data.
These biomarker data have revolutionized personalized
medicine by presenting real empirical data on human dis-
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eases that can be analyzed in order to identify diagnostics,
prognostics and therapeutics solutions for each patient.

[0818] The combination of MMs with Al and ML can also
revolutionize medicine in future years. The ability to analyze
massive data sets in human medical studies has enabled the
illumination of our understanding of numerous complex
diseases. Nevertheless, the ability to make these technolo-
gies useful to individual patients in order to identify and treat
real diseases has been elusive.

[0819] IMMs enable the next generation of clinical medi-
cine. Physicians and researchers now have powerful tools
that precisely analyze individual patient diseases. From
these analyses, doctors are now able to solve individual
patient’s previously insoluble medical challenges, which

save patients time and money and improve their quality of
life.

[0820] Though IMMs are applicable to a broad range of
(human and animal) diseases, there are several areas for
which they are particularly well suited. The most optimized
applications for IMMs include medical categories for which
the complexity and personalization require intense analyti-
cal focus. Only by applying Al and ML to IMMs can these
complex individualized diseases be understood and treated.

[0821] One area of application of IMMs are to drug
clinical trials. While the traditional model of clinical trials,
which has embodied conventional medical solutions, has
presented an approach to testing drugs in human popula-
tions, the application of IMMs presents multiple layers of
precision and efliciency. Ultimately, the application of
IMMs to drug clinical trials reduces the timeline for
approval of drugs and, correspondingly, reduces the costs of
drug trials. Since these time and cost issues have been a key
reason for the extremely expensive R&D costs behind drug
development, application of IMMs to drug clinical trials can
be revolutionary.

[0822] Next, IMMs are applied to preemptive medicine.
Preemptive medicine is an emerging medical field that
endeavors to identify patient diseases before the actual
physical development of the disease. Applied mainly to
chronic diseases, and particularly to chronic cardiovascular,
neurodegenerative, autoimmune and metabolic diseases,
IMMs are useful for preemptive medicine by modeling and
predicting potential individual pathologies from patient bio-
marker data. An enormous amount of time and money can
be saved by correctly anticipating and treating debilitating
chronic diseases such as cardiovascular, neurodegenerative,
autoimmune or metabolic diseases before they manifest.

[0823] One of the most complex and difficult disease
categories involves autoimmune diseases, in which an indi-
vidual’s immune system mistakenly attacks an organ or
biosystem. These diseases are difficult to analyze, often
misdiagnosed and rarely present with significant therapeutic
options. IMMs are optimized for identifying and solving
these complex and varied autoimmune diseases.

[0824] Finally, one of the most complex and insidious
diseases in the world involves metastatic cancer. Cancer is
the second leading cause of death worldwide, with 90% of
mortality caused by metastases. Most metastases have been
shown to be drug resistant, suggesting very poor prognosis.
However, cancer metastasis may be an ideal category for
application of IMMs. Particularly in the case of individual-
ized treatment of metastatic cancer in which each patient has
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a unique set of genetic features, IMMs present analytical
solutions for accurate diagnoses and presentation of thera-
peutic solution options.

Drug Clinical Trials with IMMs

[0825] Once a drug is discovered or designed, it must be
tested in a random blind study of drug clinical trials in order
to confirm its safety and efficacy. Drug testing includes
pre-clinical testing on animals (mice, rats, dogs or pigs)
before clinical testing. Generally, clinical trials occur in
three phases with increasing numbers of patients. Most drug
trial designs have a control arm which administers a placebo
and an active arm which administers a novel drug candidate.
[0826] Developing a new drug typically takes at least a
decade and costs an average of at least two billion dollars.
Only about 10% of drug candidates survive the third phase
of clinical trials, mainly because of the discovery of adverse
side effects, indicating the high risks and costs of drug
development. Clearly, one of the major costs associated with
drug development involve drug clinical trials, which provide
a fundamental bottleneck to final drug approval. The ques-
tion becomes: How can the application of IMMs accelerate
the research and development components of drug discovery
as well as the clinical trials components of drug testing?
[0827] In the main, IMMs are critical in the identification
of molecular (protein) targets, in the analysis of cellular and
protein pathway dynamics of drug assimilation, in the iden-
tification of patient biomarkers that detect the presence and
trajectory of disease evolution, in the identification of drugs
that may treat the disease target, in the novel synthetic
design of a drug to optimally treat the drug target, in the
identification of drug-drug interactions, in the identification
of drug toxicity and side effects of off-target drug interac-
tions and in the identification of therapeutic prognostics of
ongoing drug treatment of a disease. The application of
IMMs to these important biomedical elements are projected
to transform the nature of the drug development and testing
process with an aim to radically increase the precision of
drug testing and vastly reduce the time and costs associated
with drug development and trials.

[0828] Preclinical testing reviews data to determine the
efficacy of clinical trials in humans. MMs perform in silico
experiments on patient pathologies to diagnose a disease and
identify disease targets. In addition, MMs simulate drug
development options in order to optimize drug candidates to
match particular patient protein targets so as to address a
patient’s disease.

[0829] Basic research has historically laboriously per-
formed some of these valuable functions, which can now be
performed analytically in MMs. Traditionally, basic research
identified possible targets to treat diseases and then screen
molecules and compounds to assess their utility in applica-
tion to the disease targets.

[0830] The ability to combine MMs and Al with the
identification of molecular biomarkers has enabled an under-
standing of a patient’s disease by elucidating genetic, RNA
and protein abnormalities that allow us to detect disease
targets and then develop novel targeted drug therapies to
complex diseases.

[0831] In the case of mice or rats, which have brief
gestation cycles to enable rapid breeding, a critical advan-
tage of animal studies is the ability to genetically engineer
rodents that may fit a particular targeted drug test. In effect,
these genetically engineered rodents provide proxies for real
human diseases that represent disease targets for drug devel-
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opment. Therefore, once genetically engineered, these
rodents possess the specific genetic characteristics that are
optimized for precision targeted drug testing.

[0832] In a sense, MMs now make animal studies obso-
lete. While data on mouse or rat experiments are useful,
particularly in genetically altering and testing specific tar-
geted drugs on altered mice or rats, the in vivo testing on
animals can now be minimized. In some cases, a hybrid of
MM analytics in combination with targeted animal experi-
ments can yield promising prognostics.

[0833] But MMs alone can provide data on a control group
of a disease study because there is no therapeutic interven-
tion required and thus no drug to test. These diagnostic
prognostics merely identify a disease diagnosis and project
or predict the disease progress based on an analysis of a
group of similarly situated patients. The control group can
be represented in a MM by virtual patients from analysis of
synthetic data on similar patients. In other words, a preclini-
cal testing can include a group of virtual animals that are
emulated from synthetic data about a disease diagnosis and
non-interventionist prognosis that is identical to a control
group. Such an analysis can be done in a computer without
harming a single animal.

[0834] Traditional clinical trials consisted of symptom-
based general disease patient testing. A general drug study is
applied to a general pathology, such as high blood pressure
or high cholesterol. With generalized random drug discovery
organized to identify a drug candidate, typically a small
chemical compound, drug testing of the drug candidate
would occur in a randomized double-blind study of patients
with a general disease and patients without the disease.
Patients with a condition like high blood pressure or high
cholesterol would test a drug candidate in order to identify
a positive effect on the patient’s condition. Patient candi-
dates with overlapping conditions would be removed from
the active arm of the clinical trials so as to focus on patients
with testable pathology conditions. Patients with observable
symptoms would apply to and qualify for the clinical trial.
[0835] Modern clinical trials go beyond the traditional
model by selecting patients on the basis of the presence of
biomarkers indicating the characterization of a disease state.
This indication of a genetic mutation, RNA abnormality or
dysfunctional protein provides evidence of the presence of a
particular disease that can be precisely targeted and treated.
Clinical trial patients are selected on the basis of the pres-
ence of an underlying disease state, with empirical evidence
attributing to the presence of the disease state. When the
active arm of a clinical trial applies a drug candidate to
qualified patients, patient biomarkers are tested to objec-
tively identify patient improvement through active drug
testing. Increasingly, the U.S. Food and Drug Administration
(FDA) and the European Medicines Agency (EMA) require
data showing not only biomarkers data on eligibility and
progress, but data on protein pathway interactions revealing
the biochemical operations of drugs.

[0836] In order to obtain a sufficient quantity of (mutated
gene or protein target) qualified patients, it is necessary to
transcend space beyond a single central physical location.
Hybrid clinical trials may include hundreds of different
locations in order to attract sufficient qualified patients.
[0837] In addition to identifying patients according to
unique genetic mutations, patients are stratified according to
particular combinations of biomarkers that indicate a form
of a disease and the stage of progress of the disease.
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[0838] In the case of the control arm, to which a placebo
is administered in the clinical trials, the patient candidates
have confirmation of the presence of a disease, including a
specific genetic variance and particular biomarkers. The
control arm patients’ disease continues to develop unaided
by an active drug. Therefore, diagnostic prognostics tech-
niques of tracking the disease progress apply to patients in
the control arm. We know that they have the targeted disease
and that the disease progressed without intervention. Bio-
markers that track the disease development indicate the
disease progression as though they are not in the (active)
drug trial at all.

[0839] In modern clinical trials, a protein target is identi-
fied and the drug candidate is selected to apply to the drug
target. Patients are selected with an identifiable disease state
that enables the precise targeting of the protein target by the
drug candidate.

[0840] IMMs can track the control arm of the drug clinical
trials. MMs identify qualified patients with confirmation of
the presence of genetic variance(s) and dysfunctional RNA
and protein biomarkers. The MMs apply ML to compare
these qualified patients with other similar patients in medical
databases. These databases track the progress of patients
with the presence of abnormal genetic, RNA and protein
data. From these comparisons of patients and analyses of the
disease progress, the MMs are able to project patient disease
progress without drug treatment intervention. Consequently,
MMs can plot projected progress of the patients with the
particular disease that is untreated relative to the progress of
the patients that are treated with a drug candidate in the
active arm of the drug clinical trials. Some of the diagnostic
prognostics of the untreated control arm patients can be done
by MMs in silico with virtual analyses by simply tracking or
projecting the trajectory of the development of the disease.
MM models apply ML to aggregate general patient data on
the disease from electronic health records independently of
the clinical trials since these data of disease projection
without intervention should be identical to the progress of
the disease in patients in the control arm. The MMs build
models that enable the hybridization of the control arm of
clinical trials into virtual patients and actual patients. For
example, the biomarker data that are tracked in patients with
the precisely identified disease in the control arm of the
clinical trials should be the same biomarker data that are
tracked from patients with the precisely identified disease
outside of the clinical trials since no treatment is applied in
either case and the diagnostic prognosis should be identical
in both cases.

[0841] In an embodiment, GANs generate synthetic data
of patient medical characteristics from aggregated electronic
health records that show statistically reliable enlarged data
for models. The medical synthetic data enhance and enlarge
the data sets for MM analysis of patient clinical trial data.
[0842] Some advanced clinical trials now apply Al for
analysis of results from both the control arm and the active
arm of the drug trials. For instance, Unlearn.Al applies
conditional restricted Boltzmann machines (CRBMs), a
form of ML, to clinical trials. CRBMs are shallow, single
layer, NNs that consist of only one hidden layer. Single layer
NNs have a limited “feature learning” capacity relative to
deep learning NNs that have more hidden layers. Neverthe-
less, CRBMs generate synthetic patient features in a control
arm that enable the extrapolation of disease progress in some
conditions. For instance, these models can extrapolate the
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presence of virtual biomarkers in order to aggregate virtual
diseased patient features to estimate untreated pathology
evolution. Sadly, however, virtual patients in clinical trials
are not themselves models of patients since they emulate the
existence of an artificial patient rather than track the prog-
ress of real patients. Therefore, virtual patients in the control
arm are not tracked per se because the models generate
instead virtual patients that are tracked through extrapolation
of an analysis of real patient disease progress. The analysis
of the virtual patients can reveal data that predicts behavior
of real patient progress in the control group, thereby reduc-
ing the need for many patients in the control group. The
suggestion is that possessing knowledge of the prediction of
patient disease progress without treatment intervention
should enable the reduction of the control group via gen-
eration of a virtual patient group. By reducing the size of the
control group, with the application of modeling and Al
techniques, time and money are conserved with this
approach. In other words, if about half the control arm
patients can be replaced with virtual patients, indicating a
hybrid control arm consisting of both real and virtual
patients, then there would be efficiencies that can accelerate
clinical trials. These models do not apply to real patients but
rather to emulated virtual patients in order to maximize the
efficiency of the control arm of clinical trials. This approach
also promotes patient anonymity on the control arm side of
the clinical trials.

[0843] IMMs are applied to drug clinical trials in order to
optimize personalized medicine. Precision clinical trials
need MMs to analyze and track actual active arm patients.
MMs are useful for precision diagnosis of actual patients
and for precision prognostics tracking of real patients’
disease progress. Actual patients are tracked with MMs in
clinical trials. MMs can be used to generate virtual patients
by emulating actual patients; these virtual and actual patients
are then analyzed and compared in order to assess precise
disease diagnoses and prognostics.

[0844] A new class of clinical trials applies MMs to
narrow the focus of testing on unique genetic pathologies.
MMs are applied to the active arm of drug trials.

[0845] In one embodiment, patient data are aggregated in
the active arm of clinical trials. The MMs analyze a set of
patient data in trials overtime. The MMs assess the patients’
drug candidate reactions. MMs identify and analyze bio-
markers to track patients to enable drug reaction predictions.
MMs compare data from active arm patients over time.
MMs predict reactions to drugs in patients with similar
characteristics. MMs identify and assess patient drug reac-
tion trajectories.

[0846] MMs are applied to track active arm patient prog-
ress of an application of a new drug candidate. The actual
drug response is tracked by tracking periodic updated bio-
marker data. The MMs then compare the actual drug can-
didate application in the active arm of the clinical trials to a
placebo application in the control arm of the clinal trials. In
other words, the MMs construct a diagnostic prognostics
analysis to project the progress of the disease without
intervention in the control arm of the clinical trials in
comparison to a therapeutic prognostics analysis to project
the progress of the disease with drug candidate application
in the active arm of the clinical trials in order to compare the
two prospective trajectories of the disease. The MMs ana-
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lyze the updated biomarker data over a time series in order
to track the drug candidate application in the active arm of
the clinical trials.

[0847] By assigning an MM to each patient in the control
arm and in the active arm of the drug clinical trials, drug trial
administrators have access to data sets on each patient’s
unique genetic mutations, abnormal RNA and protein aber-
rations in addition to each patient’s ongoing (gene, RNA and
protein) biomarkers. These data can be aggregated into a
general model for analyses of the control arm and the active
arm of the clinical trials. In addition, MMs track and
construct models for disease prognoses under different con-
ditions in order to compare patient prognostic data over
time. For instance, MMs can compare the placebo in the
control arm to the actual drug effects in the active arm.
[0848] These data enable the MMs to develop a picture of
the mechanics of the disease development on a molecular
and cellular level. Since the patients are selected on the basis
of genetic mutations and dysfunctional proteins that operate
in protein interaction networks, it is possible for the MMs to
track the molecular interaction process underlying the gen-
eration or interference of the disease. For example, precisely
because the clinical trials select specific patients based on
their genetic profile for the presence of mutations or protein
targets, the drug candidates are similarly selected for the
clinical trial for their prospective ability to address the
disease target(s). These interactions are mapped and tracked
by the MMs as the drug is applied in the active arm and the
patients’ biomarkers are tracked. The biomarker data are
initially applied to diagnostically identify the presence of
genetic mutations, RNA abnormalities and dysfunctional
proteins that may act as disease targets, while continuing
biomarker data are assessed to track the development of a
disease without drug intervention in a control arm or
assessed to track the treatment of a disease with drug
intervention in the active arm of the clinical trials. This
fine-grained application of precision medicine in clinical
trials is optimized by application of MMs.

[0849] In an embodiment of the invention, MMs are
applied parallel to clinical trials. While MMs are applied to
drug discovery and drug design because of their use of in
silico drug experimentation after prospective disease targets
are identified, MMs are applied to diagnostics by identifi-
cation of a patient’s molecular biomarkers for assessment of
genetic, RNA and protein dysfunctions to which the drug
candidates are targeted. In addition, MMs are applied to test
in silico many prospective drug candidates on multiple
differentiated disease targets. In effect, many prospective
drug candidates can be tested on virtual patients in order to
accelerate drug development and winnow down the most
probable effective drug candidates. These disease target
identification and drug development and testing processes
provide preliminary pre-clinical analysis preparatory to
clinical trials.

[0850] With increased precision of disease targeting from
increased exactitude in identification of specific genetic
mutations, clinical trials are substantially narrowed. On the
other hand, if the clinical trials target a somewhat broader
range of similar genetic mutations for disease targets with a
broader drug regimen, the clinical trials can be broadened to
include more generally similarly situated patients.

[0851] The advantage of precision focus of personalized
medicine in clinical trials is the ability to not only precisely
target a disease with a uniquely targeted drug, but also the
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ability to continuously track the drug candidate efficacy over
time. MMs analyze the drug candidate tracking, via bio-
marker time-series analyses, in order to assess the continu-
ing effects of the drug on the underlying disease. Drug trials
should detect a positive effect on a disease protein target
quickly after application of the drug candidate. The thera-
peutic prognostics biomarker data are tracked in order to
empirically demonstrate the positive effects of the drug on
the patient’s disease. On the other hand, if the application of
a drug candidate on a patient, as revealed in biomarker
tracking data, is as ineffective as application of a placebo,
then these data also reveal important information about the
lack of efficacy of the drug candidate. In effect, the MMs
analyze the spectrum of options between a placebo and a
major positive effect on a disease, such as complete remis-
sion. The effective differentiated results for each patient of
the application of drug candidates, reflected in biomarker
data analyses in MMs, reveals the relative success or failure
of each drug.

[0852] Given enough information about a disease’s pre-
cise diagnostics and prospective drug candidates, MMs are
able to predict how a patient responds to different treatment
options. From these predictions, the actual drug candidate
performance is measured. When the actual drug perfor-
mance is more effective than predicted, this feedback infor-
mation is useful for updating the model and prospective
predictions. On the other hand, when the actual drug per-
formance is less effective than predicted, the active arm can
be stopped or modified pending review.

[0853] When the MMs reveal that a drug candidate works
remarkably well on a large share of the active arm of the
trial, it is unethical to continue the trial by disallowing the
control arm patients to have access to the drug. Contrarily,
when the MMs reveal that a drug candidate is simply not
working well on any patients in the active arm, relative to the
control arm, the clinical trial should be terminated for lack
of efficacy. The MMs can reveal a large space between these
poles on the spectrum of relative efficacy of the prospective
drug candidate. These data obtained during clinical trials at
mid-stream, effectively after phase 1I, enable the ability to
change the design of the clinical trials by narrowing the
patient genetic profiles or by modifying application of the
drug candidate, such as changing the drug dose and/or drug
timing. The data obtained at the mid-stream point in the
clinical trials are useful for MMs to analyze drug side effects
and drug toxicity. MMs identify problems with the drug
candidates mid-stream and redirect the clinical trial. It may
be necessary, for instance, to modify a drug candidate in
order to optimize the fit with actual patient disease targets.

[0854] Not every patient’s genetic anomaly may represent
an exact match for a drug candidate. There may be a 50%
match or a 75% match, but not a 100% match for a genetic
variance. It is therefore necessary to develop drug therapies
that are “generally” precise. For example, in the case of
cancer, there may be several hundred genetic mutations at
the source of a neoplasm, yet only about 20% of these are
active mutations that may represent the genesis of a disease,
with only 4 of these representing dysfunctions of regulatory
genes at the source of the solid tumors. In this sense, MMs
apply combinatorial optimization algorithms to identify dis-
ease targets. Different sets of genetic mutations or resulting
dysfunctional proteins in different patients may be compared
by the MMs in order to target overall active genetic muta-
tions common to different sets of patients. In other words,
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patients are stratified into different groups based on sets of
genetic mutations, protein dysfunctions or abnormal bio-
markers. MMs treat different sets of patients as a separate
“class” with different sets of precise dysfunctional genes,
RNA, proteins or biomarkers, each different class of which
may be treated separately with a different single drug or
combinations of drugs. These subgroups of different patients
with similar but slightly differentiated genetic or protein
profiles are categorized into different clusters for application
of drugs that match their specific profiles. The testing of
patients for biomarkers provides a useful tool for establish-
ing this patient profiling and stratification. Once categorized
into clusters, these patient groups are then treated with
differentiated drugs targeted to their specific diseases. Such
stratification of patients into disease subtypes enables appli-
cation of different clinical trial drug protocols. MMs are
applied to track the therapeutic prognostics of the predicted
drug response in the active arm of clinical trials that target
each disease subtype.

[0855] There are over 8,000 rare orphan genetic diseases.
As we are able to identify with greater specificity the genetic
dysfunctional sources of these diseases, it is necessary to
structure clinical trials to assess drug candidates for these
diseases. Next-generation clinical trials will precisely target
these diseases with new generations of targeted drugs. In
some cases, new drugs will be custom designed with MMs
in order to apply to a specific small set of patients. Conse-
quently, clinical trials will be required with smaller patient
samples because of a dearth of similar genetic anomalies.
MMs will be essential to enable effective clinical trials by
zeroing in precisely on the disease’s origins as well as
specific therapeutic solutions. Ultimately, MMs and ML
techniques will rapidly identify the source of the disease and
rapidly identify drug solutions. The precision of the diag-
noses and the therapeutics solutions will include analyses of
the detailed mechanisms of disease operation, including
maps of protein pathways and protein-protein interactions,
in order to accelerate drug trials. MMs may not only
effectuate personalized medicine but also effectively accel-
erate the drug discovery and testing processes as well,
saving time and money.

[0856] MMs enable the automation of clinical trials. Per-
sonal health assistants (PHAs) are software agents that
perform functions to automate MM processes such as col-
lecting patient medical data, analyzing patient medical data
and applying Al algorithms to analyze patient medical data.
PHAs cooperate with multiple MMs to aggregate multiple
patients’ medical data.

[0857] Physicians and drug clinical trials administrators
work together to identify prospective patients for clinical
trials. Specialist physicians may have patients that have
identified specific genetic criteria for a specific drug clinical
trial. Clinical trial administrators screen prospective patients
and invite the qualified patients into the clinical trials. Drug
companies network with specialist physicians (particularly
at university hospitals) in order to establish specialized drug
clinical trials.

[0858] Patient relationship management (PRM) software
coordinates the eligibility and selection of patients into drug
clinical trials at the invitation of pharmaceutical or biotech
companies. The PRM software utilize PHAs to track patients
and coordinate biomarker testing. PRM, PHAs and MMs
work together in order to collect and analyze patient medical
data.
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[0859] In the case of approved drugs, MMs and PHAs
work together to identify an appropriate drug for a particular
patient pathology.

[0860] In the case of drug discovery or novel synthetic
drug designs, MMs and PHAs work together to identify
appropriate drug clinical trials for patients based on the
patients’ unique genetic or dysfunctional protein profiles. In
some ways, this precision medicine model of discovery and
clinical trials is the exact reverse of traditional drug devel-
opment in which a drug was randomly discovered and then
efforts were made to identify the new drug’s possible
medicinal uses. Personalized medicine, on the other hand,
optimizes the therapeutics process by first identifying the
patient’s disease on a molecular level, mainly by analyzing
biomarkers for an understanding of the genetic, RNA or
protein source of the disease, including disease targets, and
then seeks to identify drug therapies specifically tailored for
these molecular targets. In a sense, then, after specialist
physicians have identified the molecular sources of a
patient’s disease, the specialists outsource the drug devel-
opment to drug companies. Once they receive the request for
a new drug to treat the patient disease, the drug companies
wait to receive a number of orders for similar drug therapies
from other specialist physicians with similar patient profiles.
The drug companies then initiate the coordination of a
cluster of patients by generating a doctor network to focus
on clinical trials to treat a specific malady for these patients.
The drug company and the specialist physicians coordinate
the narrow drug clinical trials.

[0861] Because the numbers of highly specialized genetic
diseases are relatively small, it may be necessary in some
cases, for the drug clinical trials to require a virtual control
group that consists of MMs that analyze the diagnostic
prognostics set of qualified patients. These can be repre-
sented by patients in other geographic regions or at other
historic times that also qualify for a drug study because of
similar genetic, protein or biomarker profiles. The virtual
control group is computationally similar to a real control
arm. However, since there are so relatively few quantities of
patients with a very narrow genetic profile that may qualify
for a drug study, the virtual control group either stands alone
as a proxy for a control group in the clinical trial or as a
component of a hybrid control group.

[0862] In an embodiment of the invention, MMs are
applied to in silico pre-clinical trial design. GANs generate
synthetic patient data from protein language models
(PLMs). In these virtual pre-clinical trials, MMs apply ML
algorithms to analyze disease features, genetic mutation
categories, dysfunctional proteins, protein-protein interac-
tions, intra-cellular protein pathways and drug-target rela-
tions. MMs generate drug candidate options to target par-
ticular disease targets, which are virtually tested in hybrid-
virtual animal testing in which the control arm can be
substantially virtual. Once the drug candidates pass this
phase, the clinical trials apply MMs to analyze synthetic
patient data. In some cases, the control arm of the clinical
trials is comprised of a synthesis that includes partial virtual
patients. In other cases, the control arm may be comprised
of entirely virtual patients that consist of synthetic data
compiled from diagnostic and diagnostic prognostics data on
similar patients. The MMs can also predict the effects of the
drug candidates on patient’s diseases by applying therapeu-
tic prognostics. These predictions are continually updated in
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the MMs as more biomarker data are provided along the
process of updating the active arm of the clinical trials.
[0863] Examples of diseases and drug candidates that are
applied to clinical trials with IMMs include cardiovascular
diseases, neurodegenerative diseases, cancer, metabolic dis-
orders, autoimmune diseases and orphan genetic diseases.
Many of these diseases require targeted drug therapies and
application of personalized medicine approaches that
involve IMMs and Al

Preemptive Medicine with IMMs

[0864] The idea of preemptive medicine is relatively new.
The main principle is that it is possible to predict the
development of a disease before the disease has presented
symptoms and to initiate treatment options in order to
minimize the onset of the disease. The notion of preemptive
medicine is attributed to Imura’s examination of the devel-
opment and progression of non-communicable diseases.
Particularly in the West, chronic diseases such as cardiovas-
cular disease, type II diabetes and neurodegenerative dis-
eases are prevalent because of a combination of genetic
components and epigenetic lifestyle or environmental com-
ponents. If it were possible to anticipate the development of
chronic diseases before they occur, would it not be useful in
order to save patients years of wellness and high costs
associated with patient care? Interestingly, preemptive medi-
cine is tailored to each individual in order to decipher a
particular disease condition. Such individuation of medical
analysis is well suited to individualized medical models to
gather information about potential diseases, to analyze and
predict the nature of the diseases for each individual and to
propose a tailored treatment plan for each patient.

[0865] Information about an individual’s genetic risk fac-
tors provide important clues for preemptive medicine. IMMs
are able to assess genetic variances and hereditary informa-
tion in order to build models that analyze a patient’s pro-
pensity for specific diseases. Whereas MMs are useful in
order to analyze an actual patient disease by collecting
information about genetic, RNA and protein dysfunctions,
the models are able to analyze molecular data in order to
predict the patient’s risks for developing chronic diseases in
the future and to recommend a targeted treatment plan.
[0866] Preemptive medicine relies in part on the collection
and analysis of risk biomarkers and predictive biomarkers.
Risk biomarkers evaluate the prospect of a future onset of a
disease before symptoms actually appear. For example,
recent research has identified biomarkers that assess the risk
of onset of Parkinson’s disease several years before symp-
toms appear. In effect, risk biomarkers provide a proxy for
a diagnosis of the presence of a disease but without symp-
toms. Predictive biomarkers anticipate the progress of a
disease at some time in the future wherein symptoms do not
yet appear but are expected to appear. MMs apply Al and
ML in order to analyze biomarkers.

[0867] If symptoms do not yet present, the MMs provide
analysis of disease states that are expected to present symp-
toms in the future. Practically speaking, the MMs make a
pre-diagnosis of the prospects of a disease. The probable
development of a disease is then analyzed in the MMs in
order to develop a predictive diagnostic prognosis of a
disease. Ultimately, the MMs develop a treatment plan and
therapeutic prognosis in order to anticipate the future devel-
opment and management of the disease.

[0868] Examples of preemptive medicine include hyper-
tension and hyperlipidemia, both of which are critical silent
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killers that behave as a source of heart disease, which has
been the leading cause of death in the U.S. for 100 years. If
we can take biomarker samples from patients that anticipate
with a significant probability that they will develop hyper-
tension and/or hyperlipidemia, then it is optimal to prepare
the patient years in advance for the likelihood of the onset
of these diseases. One way to prepare for the development
of these diseases is to change one’s lifestyle. This may
include reducing smoking, alcohol consumption and over-
eating as well as increasing cardio activity. However, even
after engaging in these healthy activities, it may be neces-
sary to initiate a modest drug therapy program that includes
a statin for hyperlipidemia or an ACE inhibitor or a beta
blocker for hypertension.

[0869] MMs gather biomarker data from patients and
perform analysis of the data in order to build individualized
patient models to ascertain future probable disease risks. The
MMs compare the patient biomarker data to a database of
genetic, RNA and proteomic data of similar patients’
pathologies. The MMs analyze the patient data and develop
predictions of probable scenarios of chronic disease devel-
opment for each patient. In a sense, this analysis does not
diagnose a particular disease because there is a lack of
symptoms. Rather, the analysis develops a pre-diagnosis in
which a propensity of a disease is probabilistically identi-
fied. The MMs predict the prospects of a disease in the future
but also predict the probable progression of the disease. For
instance, the rate of the development of the disease is
predicted based in part on patient environmental choices that
include food, alcohol, smoking and sedentary lifestyle. The
diagnostic prognosis of a disease in the context of preemp-
tive medicine, then, becomes a sort of pre-diagnostic pre-
diction of the progress of a probable disease development
over time. The hypertension will likely develop more
slowly, according to an IMM, if the patient is neither
overweight nor a smoker than if she is both, the evidence of
which is established by comparison of the patient MM to a
database that aggregates patients with hypertension to vari-
ous outcomes.

[0870] Whereas hypertension and hyperlipidemia may
have lifestyle and epigenetic components, other diseases,
such as neurogenerative diseases, may have more genetic
components. These genetic components are tracked by
assessing and analyzing biomarkers in the patient MMs.
While onset of Alzheimer’s disease may not present at age
60, there may be a substantial probability of presentation of
the disease by age 75 or 80. Although genetic biomarkers are
useful in predicting future disease development, imaging
biomarkers are also advantageous for MMs to building
models to anticipate the probability of the disease. The
trajectory of the progression of the disease’s development
can be predicted by an analysis of biomarkers over time,
which are analyzed in the MMs. In addition, a genetic
analysis in the MMs can reveal the significant probability of
pre-disease of Alzheimer’s development in the future. While
an initial biomarker assessment at age 60 will seek to
develop an assessment of an actual pathology condition, the
continued development and assessment of biomarkers over
a period of years can build a picture in the MMs of the
probability of the development of Alzheimer’s disease in the
near future. The assessment of multiple biomarkers over
time provides the model with a clear pattern that enables a
prediction of the development and progression of the dis-
ease. The combination of biomarker assessments over dif-
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ferentiated time frames enables the development of models
that are able to predict a future disease state in a sort of
pre-diagnosis and pre-prognosis.

[0871] AI and ML are useful tools for MMs in order to
develop their analysis of preemptive medicine. While gen-
eral medical databases are useful as reference tools to enable
the aggregation of groups of patients in order to understand
the multivariate sources of diseases, MMs are well suited to
analyzing individual patient data and, by utilizing Al and
ML algorithms, assessing individual patient potentialities
for future disease onset. The biomarker data in individual
patient MM are compared to the large medical databases in
order to identify probable future disease progression sce-
narios. The Al and ML algorithms are applied to the MM
analysis to identify patterns of potential future disease
presentation as well as trends of prospective probable dis-
ease scenario development. Such analysis of future prospec-
tive diseases enables physicians to monitor patients for clues
about the likelihood of the onset of symptoms.

[0872] Once the disease has been probabilistically pre-
dicted, the MMs will develop therapeutic options. These
future drug therapies will seek to tailor drugs to the patient’s
prospective disease. The MM analysis of the patient’s bio-
markers will identify the best drug therapeutic protocol as
well as predict specific drug therapy reactions. This drug
treatment approach provides a proactive personalized inter-
vention modality for a prospective disease as it progresses.
In effect, the therapeutic interventions are tailored to antici-
pate the disease progression. Al and ML are applied in the
MMs to assess the therapy option scenarios across the early
stage of disease progression. In a later step, therapeutic
prediction of probable pathology in preemptive medicine
identifies the progress of the therapy by assessing therapeu-
tic feedback. Biomarkers can be analyzed by MMs in order
to assess therapeutic feedback. For instance, if a drug is
applied that does not address the evolving underlying dis-
ease, the drug therapy can be modified. The MMs identify
scenarios of disease trajectories with different therapeutic
options. The MMs map different therapy scenario options
and recommend different options in different circumstances.
In some cases, the onset of a disease is delayed with the
application of an interventionist drug therapy. In other cases,
the disease progresses without an effect from the drug
therapy, suggesting the need for a different drug therapy. In
either case, the MMs tailor the intervention therapy to a
unique patient disease prognosis. If the feedback from data
on therapy options in altering the disease progression course
suggests a new therapeutic approach, the MM may recom-
mend a personalized therapy that consists of a novel syn-
thetic drug tailored to the patient’s unique disease complex-
ion. In an embodiment, preemptive pharmacogenomics
(PGX) can be applied by MMs to assess an individual’s
genomic data and identify the optimal tailored patient
therapy.

[0873] The ultimate goal of preemptive medicine is to
treat pre-disease and buy time before the onset of a proba-
bilistic forecast of a disease. If a patient can increase their
wellness term five or ten years before the onset of rheuma-
toid arthritis, Alzheimer’s or cardiovascular disease, this
could provide a great deal of benefit in the quality of life as
well as substantially reduce the costs associated with dealing
with a debilitating disease. In the case of cancer, however, an
early diagnosis can make a major difference in the outcome;
preemptive medicine provides a set of tools to enable earlier
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diagnosis; in some cases, such as in pancreatic cancer, where
many cases are diagnosed far too late for therapeutic inter-
ventions, this early detection is transformational. Therefore,
preemptive medicine can become integrated into personal-
ized medicine as an important diagnostic and therapeutic
modality that will dramatically improve the quality of life
for many patients.

[0874] Although it is not considered preventive medicine,
preemptive medicine shares some elements with its preven-
tive med cousin. Preventive medicine has three aspects, viz.,
primary prevention, which consists of addressing risky
behaviors such as smoking, drinking and overeating, sec-
ondary prevention, which consists of early disease detection
in order to limit the progress of a disease, and tertiary
prevention, which seeks to constrain the impact of a disease
on symptomatic patients. Clinicians deal with tertiary pre-
vention while public health officials deal with primary
prevention. A popular example of primary prevention con-
sists of public vaccinations, which seeks to prevent infec-
tious diseases. Most of clinical medicine is suited to only
deal with patients with clear symptoms of diseases, almost
limited to a reactive position. This leaves secondary preven-
tion as the odd man out, without a clear home in medicine
for anticipating pre-disease. As medicine moves inexorably
towards a personalized and precision model of the practice,
with applications of modeling and Al as routine and with the
regular utility of gene, RNA and proteomic biomarker
analyses, it is clear that the idea of the practice of medicine
may be expanded beyond a merely reactive model and may
include an expansive understanding that includes preemp-
tion and anticipation of future prospective diseases.

[0875] Increasingly, medicine is seen as more complex
than merely the fixed genetic structure we are born with.
Such a broader view of medicine includes epigenetic ele-
ments as well as environmental components. As an example,
some preemptive diseases may have a prenatal component,
suggesting a developmental origin of diseases that can
influence the onset of future diseases. How environmental
influences in the womb affect later disease developments
may explain in part the explosion of type II diabetes, making
some people more susceptible to dietary factors later in life.
Similarly, the deprivation of patients in early life may
burden them later with health problems. In addition, while
some genetic diseases have a high likelihood of presenting
with a health challenge, other genetic diseases may require
an epigenetic element in order to manifest. These examples
suggest that preemptive medicine and MMs provide a new
category of thinking about medicine and provide a new,
broader, spectrum for understanding diseases over a life
cycle.

Autoimmune and Inflammatory Diseases Analyses with
IMMs

[0876] The human immune system consists of two sub-
systems, the humoral (innate) immune system and the adap-
tive immune system. As a general response to a pathogen,
the humoral immune system generates a rapid inflammatory
response by activating enzymes that mark germs as targets
and by activating cytokines and natural killer cells to attack
the invading germs.

[0877] The adaptive immune system generates T lympho-
cytes (T cells), from the thymus, which employ surface
receptors to identify and attach to pathogens, and B lym-
phocytes (B cells), from bone marrow, which generate
antibodies that attach to a closely matched antigen like a key
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in a lock. Killer T cells become active after their cell surface
receptors bind to a specific antigen. Helper T cells are active
in initiating B cells and antibodies. Antibodies (proteins) are
configured in a Y position with the Y components organized
to identify and geometrically fit into antigens. Once a
pathogen is identified, the T cells, B cells and antibodies
identify the antigen, remember the precise configuration of
the pathogen and pass this information on to the humoral
immune system.

[0878] The general architecture of the human immune
system describes the healthy mechanics of a functioning
network of cells and antibodies in a “balanced” position. A
dysregulated immune system presents autoimmune disor-
ders. Little is known about the pathogenesis of autoimmune
diseases, which present as a diverse set of pathologies with
only common attributes of abnormal functioning of T cells,
B cells and/or antibodies. In general, most autoimmune
diseases present with autoantibodies that attack self-antigens
comprising a patient’s own organs, tissue or cells. Autoim-
mune diseases emerge if B lymphocytes or T lymphocytes
create functional damage to organs or tissue that present as
the target autoantigen, indicating that the auto-reactive lym-
phocytes are the source of the diseases.

[0879] Autoimmune diseases include pathologies as
diverse as rheumatoid arthritis (joints), Type 1 diabetes
(pancreas), multiple sclerosis (central nervous system),
inflammatory bowel disease, Graves disease (thyroid), sys-
temic lupus erythematosus (general) and about eighty other
conditions. There is a plausible theory that Alzheimer’s
disease may involve autoimmune components. Additionally,
some diseases may be misdiagnosed but may include an
autoimmunity factor, including some kidney diseases. Each
of these diseases present with immune dysregulation. For
example, rheumatoid arthritis presents with an abnormal
surplus of T cells that attack the synovium (tissue surround-
ing joints), while in lupus, there appears to be both a surplus
of T cells and an insufficient function of a T cell receptor,
viz., a protein (aryl hydrocarbon), which, in turn, changes
the function of T cells to stimulate abnormal B cells.
[0880] While the sources of this broad range of diseases
vary, one theory suggests that inflammation caused by an
infection can be a catalyst of an autoimmune disease. For
example, long Covid may manifest a new class of general
autoimmune disease stimulated by inflammation associated
with the virus. The long-term manifestation of long Covid
may be the result of a new equilibrium of the immune
system that presents as a novel autoimmune condition
stimulated by an inflammatory (e.g., an extreme cytokine)
response to the virus. Similarly, autoantibodies may be
stimulated by inflammation in a specific organ, with the
autoantibodies not programmed to understand their clear
error of confusing the autoantigens with the target organ.
[0881] Although autoimmune diseases likely have a
genetic component, such as a gene, RNA or protein aberra-
tion, additional elements may be in play as well, including
epigenetic and environmental components that combine to
express each patient’s experience with a disease’s differen-
tiation and stratification.

[0882] A paradox lies at the root of autoimmune disorders.
While the immune system targets different proteins (anti-
gens) with different disorders, suppressing the whole
immune system opens a window to the body’s defense
system. Therefore, if the immune system is tuned down, the
subsequent suppression allows pathogens to harm the host.
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On the other hand, if the immune system is tuned up, the
overactivation has a tendency to attack the host as well as the
pathogens. Hence, it is essential to realize that the immune
system is in an equilibrium state of delicate balance that
requires targeted solutions to autoimmune disorders. There
is thus a need for selectively targeted solutions to focus or
dial back only on an autoimmune disorder, without sup-
pressing the whole immune system.

[0883] One theory of autoimmune disorders suggests that
regulatory T cells (Tregs) are key to maintaining a balance
of the immune system. Tregs are important to suppressing
auto-immune over-reaction, while proteins can be instru-
mental to activating Tregs. Johns Hopkins engineers have
identified a novel protein that combines interleukin-2 cyto-
kine and anti-cytokine antibody FS111 in order to stimulate
Treg activity. The novel protein can be administered to T
cells in the form of an encoded mRNA.

[0884] One of the great challenges of autoimmune disor-
ders lies in the difficulty of correctly diagnosing each
disease. Many of these diseases remain undiagnosed
because of their complexity and the lack of clinical tools
available. As a consequence, the patients remain unsure of
the parameters of their disease and lack specificity on a
prognosis. Without a correct diagnosis, therapeutic modali-
ties become a distant hope without practical realization. Yet
because they are so varied and complex, autoimmune dis-
orders require a personalized approach to analyzing each
patient’s condition. IMMs are well suited to provide indi-
vidualized models in order to collect biomarker data, apply
Al and ML algorithms and precisely diagnose each disease.

[0885] Biomarker data are critical for correct identifica-
tion of each type of autoimmune disease. In the case of
rheumatoid arthritis, SLAMF6, MAGE1, CD40L, FPGS,
ADORA3, IL-38, HLA-DP, IL-10, NLRP3, CARDS, TGRS,
HDAC, YTHDF2, SOCS1, ABCG2, 1L-32, TP, TGFBR2,
CD26 and HK2 refer to mRNAs associated with RNA
mechanisms, while miR-5571-3p, miR-135-5p, miR-143-
3p, miR-23b, miR-539, MiR-125a-5p, miR-146a, miR-361-
5p, miR-132-3p, miR-155-5p, miR-5196, miR-326, miR-
195 are miRNAs indicating RA and Inc-ITSNI-2,
GAPLINC, GASS, Inc-ALL928768.3, Inc-AC091493.1,
RP11-83116.1, MALATI, NEAT1, LINK-A, OSERI-ASI,
Inc-PCT1, FOXD2-ASI, GASC2, HOTAIR, Inc-Cox2 and
LINCO00305 refer to IncRNAs associated with RA. Please
refer to FIG. 4 for a detailed analysis of biomarkers involved
in autoimmune diseases.

[0886] Regarding systemic lupus erythematosus (lupus),
VCAMI and ICAM-1 are biomarkers that predict nephritic
flair, MALTI1 refers to inflammation, NAMPT and
eNAMPT refer to lung inflammation and CD163, MCP-1,
Serpin-A3, Ig binding protein 1, TWEAK, suPAR and S100
refer to biomarkers of the active disease.

[0887] Regarding autoimmune neuromuscular (CNS) dis-
ease, particularly multiple sclerosis (MS), GM1, GAl,
GDla, GD1b, GalNAc-GDla, 9-O-Acetyl GD1b, GD3,
GM1, GTla, GT1b, GT3, GQlb, 0-Acetyl GT3, LM-1,
GD1a/GD1b, GM1/GalNac-GDla, GM1/PA, GM1/GDl]a,
GMI1/GT1b, LM1/GA1 IgG and IgM represent autoantibody
biomarkers for MS, particularly for prognosis, Cytokines
Interferon gamma (IFN 7), Tumor necrosis factor a (TNF a),
Transforming growth factor f1 (TGF p1), IL-18, IL-4, IL-6,
1L-10, IL-12, IL-16, 1L-17, IL-18, 1L-22, 1L.-23, IL-37 refer
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to biomarkers correlated to MS, miR-150-5p, miR-21-5p,
miR-30e-5p and let-7 miRNA family are associated with
diagnostic and prognostics.

[0888] Regarding inflammatory bowel disease (Crohn’s),
iR-19a, miR-21, miR-124, miR-141, miR-150, miR-155,
miR-193a-3p, miR-206, miR-21, miR-143, miR-145, miR-
125b, miR-223, miR-138, miR-7, miR-19b, miR-29b, miR-
122, miR0141, miR-200b and miR-590-5p are biomarkers
associated with diagnostics or prognostics of the disease.
[0889] Regarding Type 1 diabetes, miR-375, miR-21,
miR-210, miR-24, miR-148a, miR-181a-5p and miR-210-
Sp represent biomarkers that show upregulation of T1D.
[0890] Given the availability of information about bio-
markers in each of these autoimmune diseases, it is neces-
sary to analyze the biomarkers by applying Al and ML in the
IMMs. Different patients can be stratified into autoimmune
disease subgroups by analyzing biomarkers. Not only do
IMMs analyze abnormal gene, RNA and protein biomarkers
that present as a disease, but they analyze new classes of
biomarkers, including lipid biomarkers, cytokine biomark-
ers and small molecule metabolite biomarkers. Because
autoimmune conditions may include both genetic and epi-
genetic components, abnormal gene, RNA and protein bio-
markers are supplemented with epigenetic small molecule
abnormalities. The IMMs analyze the two types of the
genetic and epigenetic components that comprise complex
interacting abnormal proteins and small molecules. In addi-
tion, Tregs may represent a new class of important biomark-
ers that require evaluation in IMMs.

[0891] IMMs are not only well positioned to model and
understand the diagnosis of autoimmune disorders, but they
are well suited to model prognostics as well. Because of the
complexity of these diseases, and the substantial variability
between the broad spectrum of each class of disorder, it is
essential to understand each patient’s disease on an indi-
vidualized basis. In general, clinical medicine struggles to
merely find a correct precise diagnosis of complex autoim-
mune conditions. However, with the advent of IMMSs, ana-
lytical models, Al and ML algorithms and a new generation
of biomarker identification, these detailed diagnoses can be
performed. From these diagnoses and analyses of models in
the IMMs, the prognoses are also performed. Particularly
because these classes of autoimmune diseases are complex,
and diagnoses as well as precision therapeutics are elusive,
a great deal of emphasis is placed on diagnostic prognostics
to predict the evolution and various trajectories of the
disease in light of both genetic and epigenetic data.

[0892] So far, only general therapies have been available
to treat superficial symptoms of autoimmune disorders.
However, there are several therapeutic modalities that may
be successful in managing or addressing these diseases.
Ideally, we want to tailor a therapy to a unique target. Since
autoantibodies and autoantigens are at the root of these
diseases, it is critical to correctly identify the source of these
autoimmune diseases.

[0893] Monoclonal antibodies (mAb) are therapies for
inflammatory diseases. mAb’s and antibody conjugates may
be effective to treat some autoimmune diseases, including
RA, Crohn’s disease and others. Some mAbs bind to and
inhibit TNF-a, while others inhibit IL.-2 receptors on T cells.
Targets of mAb’s include TNF-a, and interleukin IL.-12 and
IL-23, which are blocked by the antibodies. Interestingly,
these therapeutic modalities are also applied to immuno-
therapies for cancer and infectious diseases.
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[0894] IMMs can be configured to build models that
design novel synthetic proteins, including novel synthetic
antibodies. When a T cell receptor or an antibody (i.e., an
autoantibody) is targeted, a novel protein is designed to fit
like a key in a unique abnormal protein. The development of
synthetic antibodies is linked to complex antibody libraries
that generate antibody populations tuned for a particular
disease’s cellular or molecular receptors. Fragments of anti-
bodies are isolated and produced with unique variants in
order to match particular antigens or autoantigens. IMMs are
applied to identify an optimal match of synthetic antibodies
with prospective targets.

[0895] In another therapeutic modality, IMMs can be
involved in designing novel Treg cells in order to reprogram
immune system circuitry. In an embodiment, the IMMs
design novel synthetic proteins that stimulate Treg cells in
order to re-equilibrate the patient’s immune system. Once
applied, the IMMs track and adapt the therapy to optimize
the patient’s immunity while solving the abnormal autoim-
mune behaviors.

[0896] IMMs are suited to developing mRNA and gene
editing therapies to target specific abnormal proteins at the
source of the autoantigens and/or autoantibodies.

[0897] An additional therapeutic modality for autoim-
mune disorders includes CAR T lymphocytes that act as an
inhibitor of B cells that may overreact to create an abun-
dance of autoantibodies. CAR T therapy provides T cells
with artificial receptors (chimeric antigen receptors
(CARs)), which are designed to identify and attack cells the
receptors are configured to bind to, such as misdirected B
cells. But this model is generally not selective and is
designed to attack all B cells, which is overkill that harms
the underlying immune system capabilities. A more precise
and selective approach targets specific antigens, or autoan-
tigens. In this approach, the receptor can be reprogrammed
to target a specific protein. As they are reprogrammed to
target a specific protein, the B cell receptor will bind to a
specific antibody target, thereby leaving other B cells free to
behave normally in the immune system. This new CAAR T
(chimeric autoantibody receptor) is a precise update of the
CAR T therapy that enables careful targeting of an autoim-
mune disease. Effectively, the engineered T cells are pro-
grammed to attack specific B cells that overproduce anti-
bodies that become autoantibodies to attack autoantigens.
Both modalities were developed by researchers at the Uni-
versity of Pennsylvania. However, IMMs are well suited to
identify the precise antigens and autoantibodies that opti-
mize the specialized targeting of B cells, T cells and anti-
bodies in each patient’s immune system to target specific
autoimmune diseases.

[0898] A third major therapeutic modality for autoimmune
diseases includes mesenchymal stromal cells (MSC). This
approach applies stem cells to replace T cells or B cells in
order to effectively reprogram the immune system to redirect
energy away from generating autoantibodies to address
autoantigens. IMMs are well suited to modeling and analysis
for application of MSCs to specific autoimmune conditions.
Metastatic Cancer Analysis with IMMs

[0899] Cancer is the second leading cause of death world-
wide after heart disease. About 90% of cancer patients die
from the metastases of the primary cancer, suggesting that
metastatic cancer is one of the most complex and difficult
challenges in medicine. The traditional view of cancer
suggested a homogeneous development of cancer cells in
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various tissues in which cancer cells proliferate uncontrol-
lably. However, the current view suggests numerous factors
explaining a heterogeneous development of cancer in which
tumor cells interact with, and adapt to, their microenviron-
ment, thereby providing a high level of complexity for each
patient’s unique presentation of the disease. Cancer is a
prime example of the application of precision medicine,
which addresses unique features of a disease for each
individual. Since each individual has a different presentation
and development of cancer, including the metastatic process
of cancer development, cancer analysis presents the ideal
application of IMMs.

[0900] All cancers generate from a combination of gene
mutations. In some cases, a patient may present with hun-
dreds of genetic mutations. While many of these mutations
are benign, a few mutations will stimulate abnormal cell
growth, suggesting that each cancer tumor is unique. Except
for leukemia, the majority of common cancers involve solid
tumors, which remain the focus of cancer research. Solid
tumors may be classified by subtypes based on their unique
combinations of genetic mutations. For example, the BRAF
gene is often mutated in melanoma, the BRCA1 and BRCA2
genes are often mutated in breast cancer, the EGFR gene is
often mutated in lung cancer, the HER2 gene may be
mutated in breast cancer, the IDH1 and IDH2 genes are often
mutated in leukemia, the KIT gene is often mutated in
gastrointestinal stromal tumors, the KRAS gene is often
mutated in colorectal, lung and pancreatic cancers and the
PIK3CA gene is often mutated in some breast and bladder
cancers. The most common solid tumor cancer types, from
the most prevalent to the least prevalent, are breast, lung,
colorectal, prostate, pancreatic, melanoma, leukemia, endo-
metrial, bladder, kidney, thyroid, lymphoma and liver.
[0901] In many cases, tumors have a genetic mutation
source, but also a protein pathway genesis process. P53, for
instance, is a tumor suppressor gene, sometimes called the
“guardian of the genome.” Mutations in P53 increases the
risk of developing cancer. A healthy P53 activates P21 that
interacts with cell division stimulating protein (cdk2). AP21
and cdk2 combination stops cell division. A mutation in P53,
however, stops production of P21, which results in indefinite
cell division. This single example illustrates that there are
many genes and protein pathways that must be understood
in order to track the development and progress of cancer.
[0902] Single-tumor tumorigenesis of primary solid
tumors have a specific orientation of prognostic prediction
and therapeutic endeavor. The traditional diagnostic tool for
discovery of solid tumors is imaging technologies, including
CT, PET and MRI. The traditional therapeutic approaches
for solid tumors include chemotherapy, radiation and sur-
gery. Radiation is targeted to specific solid tumors while
chemotherapy is typically applied systemically.

[0903] In recent years, immunotherapies have harnessed
monoclonal antibodies to apply to cancer tumors. When the
immune system is dysregulated or tricked by a tumor not to
attack the tumor, immunotherapies proceed to activate the
identification of the tumor (as an antigen) in order for the
immune system to recognize and address the tumor. Immu-
notherapy provides training or reprogramming of the
immune system to identify or target the neoplasms. Mono-
clonal antibodies are applied to correctly identify the tumors
to enable the immune system to attack the tumors.

[0904] In some cases, it is necessary to biopsy a solid
cancer tumor in order to analyze its composition. However,
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in recent years, it is possible to obtain a liquid biopsy via a
blood test in order to detect cancer cells and dysfunctional
DNA, RNA and proteins. Consequently, liquid biopsies are
a major tool for detecting and monitoring cancer. While
miRNA are non-coding RNAs that regulate mRNA, it is
becoming evident that miRNAs are useful biomarkers that
demonstrate involvement in the spread, or blocking of the
spread, of cancer from a primary site to other distant sites.
miRNAs that predict metastatic cancer are metastamiRs.
[0905] Interestingly, specific cancer types tend to spread to
specific main sites. Breast cancer spreads to bone, brain,
liver and lung sites. Lung cancer spreads to bone, brain and
liver sites. Colon cancer spreads to liver, lung and perito-
neum. Prostate cancer spreads to adrenal gland, bone, liver
and lung. Pancreatic cancer spreads to liver, lung and
peritoneum. Melanoma cancer spreads to bone, brain, liver,
lung, skin and muscle. Endometrial (uterine) cancer spreads
to bone, liver and lung. Bladder cancer spreads to bone, liver
and lung. Kidney cancer spreads to adrenal gland, bone,
brain, liver and lung. Thyroid cancer spreads to bone, liver
and lung.

[0906] Once a primary tumor is established, the process of
metastasis occurs over a number of stages. Each stage
represents a major event hurdle that must be surpassed
before engagement with the next stage. The metastatic
cascade consists of the following stages:

[0907] 1. Cancer cells separate from a primary tumor
site
[0908] 2. Invasion of cancer cells into adjacent tissue

(Micro-environment angiogenesis and epithelial-mes-
enchymal transition (EMT))

[0909] 3. Migration of circulating tumor cells (CTCs) to
blood or lymphatic vessels

[0910] 4. Exit of CTCs in blood or lymphatic vessels at
another organ (MET and EMT at another site)

[0911] 5. Tumor genesis oligometastasis (formation of
several micrometastatic nodules)

[0912] 6. Systemic metastasis (adaptation and repro-
gramming the surrounding stroma)

[0913] 7. Drug resistance of tumor cells (generation of
cancer stem cells (CSCs) and reprogramming of tumor
cells to resist drugs)

[0914] Each of these steps represents an identifiable stage
among the state of evolution of metastasis. There are many
theories of the causes of metastasis, including a compro-
mised immune system, limited cell oxygen (hypoxia), mito-
chondria DNA (mtDNA) mutations, sodium leak channel
non-selective protein (NALCN) as regulator, cell plasticity
and reprogramming, epigenetic modifications and cell death
(autophagy). In many cases, once the cancer has spread to
other organs, the patient’s prognosis is poor. However, there
may be unique differentiated biomarkers available at each
stage of the process of metastasis that enable application of
identification of specific diagnostic cognizance and targeted
therapeutic interventions.

[0915] The functioning of the mechanics of tumor metas-
tasis is likely very difficult and inefficient. For instance, only
a few cancer cells with unique functional capabilities are
likely to survive a long trip to a distant organ. A circulating
cancer cell is required to survive in the vasculature or
lymphatic system and to subsequently survive and grow in
a distant organ or tissue. In many cases, the circuiting tumor
cells that survive to inhabit a distant organ may have a
different genetic profile than the original tumor’s cellular
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genetic profiles. Interestingly, given the evidence of the
transformation of genetic profiles between the primary
tumor cancer cells and the metastasized cancer cells, the
focus of therapeutic interventions on the original tumor
genetic profile often explains the poor prognosis after metas-
tasis has occurred. In other words, after metastasis has
occurred, the rules have changed and there is a need to
update therapeutic modalities to track the updated disease
status. These observations explain the positive prognosis of
therapies with a strictly localized primary cancer versus the
same therapeutic model applied to metastasized tumors
resulting in poor prognosis.

[0916] The separation of cancer cells from a primary
tumor site may mimic a normal process of tissue shedding
cells. While healthy circulating cells, with no mutations, do
not form a secondary tumor, those cells with mutations may
piggy-back on a normal repair mechanism of the cell shed-
ding process. The cell shedding process is a sort of repair
system that renews cells by destroying dying cells while
generating or replacing cells.

[0917] The invasion of adjacent tissue includes the pro-
cesses of microenvironment angiogenesis and epithelial-
mesenchymal transition (EMT). Microenvironment angio-
genesis is the process of generation of blood vessels by a
tumor to provide oxygen and nutrients to cancer cells and to
allow the expelling of waste. Angiogenesis feeds the tumor.
As the tumor grows, it invades neighboring tissue.

[0918] EMT enables the process of invasion by which
carcinoma cells in the primary tumor break through the
membrane of adjacent tissue. Once cancer cells of the
primary tumor break through and invade other tissue cells,
some of these tumor cells become circulating tumor cells
(CTCs) and enter the bloodstream. In other cases, depending
on the location of the primary tumor, the CTCs enter a
lymph node and gain access to the lymph system.

[0919] The migration of CTCs in the bloodstream or
lymphatic system enables the surviving cancer cells to travel
to distant organs.

[0920] Once the CTCs exit the blood or lymphatic vessels
at a distant organ site, the cancer cells form microtumor cell
clusters at the new site. Once immigrated to the new site, the
cancer cells engage in a process of mesenchymal-epithelial
transition (MET), the reverse process of EMT, which
anchors cancer cells to epithelial surface locations of the
new organ. When the colony establishes a foothold at the
new locations, the cancer cells engage in the EMT process
to invade the new organ tissue cellular layers.

[0921] The EMT process may lead to the propagation of
evasive CTCs which escape immune surveillance. These
CTCs may have adaptive mechanisms that effectively
modify their gene mutations in the new organ locations to
promote immune evasion.

[0922] CTCs embody circulating tumor DNA (ctDNA),
which represent detectible biomarkers that can be applied to
monitoring a cancer state or to predict a treatment response.
The differentiated ctDNA biomarkers across the metastatic
process delineate distinct diverse phases of metastasis.
These discriminated ctDNA’s at each stage of metastasis can
identify the precise phase of the disease for accurate diag-
nosis and monitoring. Once a specific stage of metastasis is
identified, therapeutic approaches can be precisely modeled
and applied to each phase.

[0923] In addition, ctDNA can be used to identify a
location of a primary tumor since the CTCs contain muta-
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tions of an original tumor. Interestingly, some CTCs may be
dormant and will not form a secondary tumor, while others
will be dormant for years and eventually form multiple
tumors at different sites.

[0924] The tumor genesis oligometastasis process gener-
ates new neoplasms by forming micrometastatic cell cluster
nodules at the new organ(s)’ locations. This early stage of
the metastatic process only recognizes the spread of a few
CTCs to new organs. In many cases, the spread of cancer
occurs in organs nearby the original primary tumor site.
Cancer cell clones are selected for fitness in order to
colonize different organs.

[0925] The later stages of metastasis recognize the spread
of CTCs from the primary tumor site to multiple differen-
tiated organ sites, illustrating the completion of a process of
systemic metastasis. The newly colonized cancer cells adapt
to and reprogram their surrounding environment. In many
cases, the genetic composition of the metastasized cancer
cells at the distant secondary sites varies from the genetic
architecture of cancer cells in the original primary neoplasm.

[0926] One of the main challenges of metastatic cancer is
that the cancers at secondary locations adapt in such a way
as to be resistant to drugs. Drugs that may have been
effective for the primary tumor may likely not work on
tumors at the secondary sites. Both metastasis and drug
resistance are critical events that adversely affect cancer
prognosis and therapeutic modality potentialities.

[0927] A major theory that explains the phenomena of
drug resistance in metastatic cancer involves the presence of
cancer stem cells (CSCs). CSCs show the potential for
self-renewal and may reprogram both the tumor and the
microenvironment of the secondary tumor sites. CSCs have
features of propagation that differentiate them from other
cancer cells. These cells have different features of adult stem
cells that can configure into differentiated cell types, since
they can generate cells that have only limited proliferation
capabilities and since they lack the original cellular mutation
architecture.

[0928] CSCs play a role in drug resistance. Drug resis-
tance in the primary tumor may be the result of the self-
renewal capabilities of CSCs. CSCs may modulate their
protein pathway functions in order to protect themselves
from drugs designed to attack them. The plasticity and
reprogrammability features of CSCs also explain their abil-
ity to evade native immune system mechanisms designed to
search out and destroy cancer cells. Understanding these
mechanisms of plasticity is important in order to design
effective therapies to address metastatic cancer. In addition
to tumorigenesis and cancer proliferation, CSCs may play a
key role in cancer recurrence after application of traditional
cancer therapies. Furthermore, CSCs may be a major feature
of metastasis, which explains the evasion of drug treatment
options as the stem cells renew and regenerate differentiated
molecular protein pathways. Observations of the therapy
evasion capabilities of CSCs in metastatic cancer reveals the
need to search for therapeutic solutions beyond the tradi-
tional chemotherapy, radiation and immunotherapy func-
tional modalities.

[0929] Different classes of biomarkers are critical in diag-
nosing, monitoring and predicting the progress of metastatic
cancer. ctDNA, CSC’s and RNA represent major categories
of biomarkers that have fine-grained application to under-
standing metastatic cancer.
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[0930] Micro-RNAs play a major role in the reprogram-
ming and dysregulation of the cancer cells as they change
their locations in different organs. Let-7, miR-9, miR-132,
miR-186-5p, miR-200 family, miR-203, miR-215 and
miR374a represent biomarkers that describe EMT. Snail,
Zebl/2, Twist, KLF8, interaction of EMT factors with
miR-148a and miR200, activation of Notch and WNT/b-
catenin pathway and TGF-b mediated EMT are biomarkers
that reveal EMT processes. Please refer to FIG. 4.

[0931] SOX2 overexpression, p38-regulated NOTCHI,
CD34/CD38, CD133/CD44, CD44/CD24, elevated ROS
and RNS, Oct3/4, CD44v6 and COX2 are biomarkers that
reveal tumor initiation and growth. Increased HIF-1 expres-
sion, activation of MAPK, P13K/AKT, RhoA and VEGFA,
Lymph angiogenesis by CXCL11, MMPs, CAFs and TAMs
are biomarkers that reveal tumor angiogenesis.

[0932] miR-10b and miR-21-5p are biomarkers that reveal
migration and invasion by CTCs. miR-149-3p, miR-140-5p,
miR-195-5p, miR-101-3p, miR-338-5p and miR-34a are
biomarkers that show miRNA replacement and miR-21,
miR-210, miR-10b, miR-155, miR-221, miR-22, miR-522,
miR-9 and miR-663a are biomarkers that show miRNA
inhibition.

[0933] CD133 (pancreatic cancer); CXCR4 and CD26
(colon cancer); ALDH+ and CD44+CD24 (breast cancer);
CD110, CDCP1 (CRC); P120CTN and CD105 (liver and
lung cancer) are biomarkers that reveal tumor metastatis.
ABCG2, CD133, ALDH, CD2711, CD20, CD44, BCMab1,
NESTIN, A2BS, CD15, MUSASHI1, L1CAM, GRP78,
CD98 and CD200 are biomarkers that show cancer stem
cells.

[0934] Elevated ALDH, enhanced expression of ABC
transporters, high expression of Bcl-2 and Bel-XL, DNA
damage repair by CHK1 and CHK?2, upregulation of IGFR
and HDAC and elevated ROS signaling are biomarkers that
reveal therapy (drug) resistance.

[0935] miRNAs may be active players in the presentation
of metastatic cancer. For example, two tumor suppressor
miRNAs, miR-15 and miR-16 show that their deletion can
affect proliferation of cancer cells. Similarly, miR-34 and
miR-200 may affect p53, a cancer regulator gene that is
deactivated in many cancers. In addition, miR-17-5p and
miR-20a may affect the activation of MYC, an oncogene
that is overexpressed in some cancers.

[0936] Given these observations and challenges, it would
be logical to target these elements of the metastatic cancer
and drug resistance phenomena along the different stages of
cancer development. Biomarkers are critical to identifying
each of these definable stages of cancer development from
primary neoplasm genesis to systemic metastasis and drug
resistance.

[0937] Fortunately, individualized medical models
(IMMs) provide an essential tool in the oncologist’s toolkit.
IMMs are useful in order to identify and monitor a patient’s
precise cancer, predict an accurate prognosis and to tailor,
track and adapt a therapy protocol for each patient. First,
IMMs map the composition and progress of a patient’s
cancer. If the cancer metastasizes, the IMM tracks this
process over several stages. Regarding the primary tumor,
the IMM identifies a therapeutic treatment plan. If the cancer
metastasizes, the IMM updates the model and the therapeu-
tic treatment plan accordingly. Because of the complexity of
each metastasized cancer, in which each cancer profile is
unique, the IMM develops a diagnostic prognostics analysis
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at each stage of the process with and without a progression
to each next stage of cancer development, by generating
different scenarios of potential progression with the most
current empirical data about the disease.

[0938] IMMs are applied to molecular models, cellular
models, organ and tissue models, DNA, RNA and protein
models, drug-target models and protein-protein interaction
models. Each of these model categories provides important
data about patient condition, progress scenarios and thera-
peutic optimization and adaptation.

[0939] In order to optimize the IMMs, the models apply
GDL and GenAl for different analyses. For diagnostics, the
IMMs apply GDL in order to analyze biomarker data. For
prognostics, the IMMs apply GDL and GenAl to model
prediction scenarios. For therapeutics, the IMMs apply
GenAl to generate models that provide novel therapeutics
solutions, including development of unique combination
therapies, drug development and novel synthetic drug design
tailored for each patient. Therapeutic prognostics applies Al
and ML algorithms in order to develop models to identify
predictive scenarios at each stage of the disease progression.

[0940] The recognition of the differentiation of stages in
the development process of metastatic cancer enables iden-
tification of novel biomarkers across the developmental
cycle of the disease. Recognition of some of these biomark-
ers assist in the development of novel therapies to treat
patients across each phase of this developmental process.
Different proteins are identified as targets at each stage of the
metastatic process. IMMs are optimized to track a patient’s
biomarkers that mirror the developmental phases of metas-
tasis. Biomarkers are essential tools used to identify thera-
peutic targets; such biomarkers are analyzed by utilizing
IMMs. In many cases, the targeted protein that is identified
by the biomarker analysis reveals the need for tailored
treatments for only a unique subset of patients. For example,
anti-miRNAs, or antagomirs, may present as excellent tar-
gets for which to develop drugs to target a specific phase of
metastatic cancer. In another therapeutic modality, RNAs
that control the immune system may be ideal targets for
therapeutic development in order to constrain or reverse
metastatic processes. Specifically, IMMs are applied to
analyze specific oncogenic miRNA inhibition or tumor-
suppression miRNA restoration. The emergence of anew
class of drugs for metastatic cancer is closely linked with
Al-enabled IMMs.

DETAILED DESCRIPTION OF THE DRAWINGS

[0941] The individualized medical modeling architecture
is comprised of several main components. These IMM
system components include (a) scores of medical modeling
categories configured in a periodic table of levels and layers
representing diagnostic, prognostic and therapeutic model-
ing types, (b) artificial intelligence, GenAl and machine
learning techniques and algorithms for medical modeling
and simulations, for description, prediction and generation
of biomedical phenomena, for artificial intelligence-enabled
software agents and for software applied to integrated health
records, patient relationship management and patient data
security, (¢) IMMs applied to diagnostics, diagnostic prog-
nostics, therapeutics and therapeutic prognostics for person-
alized medicine solutions and (d) utilization of IMMs in
personalized medicine applications of cardiovascular dis-
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ease, cancer, neurodegenerative disease, immune system
disease and genetic diseases as well as to drug clinical trials
and pre-emptive medicine.

[0942] One technology that enables deep analytics of
genomic and medical data involves medical modeling.
Medical models apply tools to duplicate each individual’s
medical data in a digital model. Increasingly, Al is applied
to medical models in order to supply insight on the molecu-
lar, cellular and system level.

[0943] Individualized medical models take individual
genetic, biomarker and imaging data in order to build a
model of each individual medical condition. Al tools
enhance medical model insights by building diagnostic
models of specific diseases.

[0944] Medical models are well suited to assess disease
prognostics as well. Medical models, guided by diagnostic
inputs and by Al, are able to evaluate disease progression
scenarios. Since diseases evolve in different directions and
at different paces based on the behavioral or biochemical
inputs, medical models are able to simulate the disease
progression changes in models.

[0945] Medical modeling of disease prognostics is able to
develop complex time-elapsed prognosis representations
based on various inputs and assess vectors of disease evo-
lution within a range of probabilities. For instance, a medical
model on an individual disease can track biomarker assess-
ment over time to evaluate or predict probable disease
progression.

[0946] Medical models are computer models. Medical
models are a computational duplicate representation of
objects that enable the visualization of biomedical structures
from different angles and the testing of medical processes. In
an active mode, as an example, medical models enable
surgeons to map out and test surgical procedures before they
operate on a patient.

[0947] Al models are computer programs that analyze data
patterns by examining large data sets. An Al model is trained
on data sets in order to analyze data patterns, detect anoma-
lies, solve problems or make predictions from limited data.
Al models use algorithms—symbolic code or mathematical
language—to apply to a data set to make a decision. While
an Al model can be used to make predictions or solve
problems, algorithms apply the logic which the model uses
to come to a conclusion. Consequently, Al models are used
to automate learning and decision making, particularly when
machine learning and deep learning techniques and algo-
rithms are applied.

[0948] There are different classes of Al models, including
generative models, discriminative models, classification
models, regression models and foundation models. ML
models are trained on data sets; by applying probabilistic
analyses, the models learn. Foundation models (also refer-
enced as base models) are pre-trained deep learning models
trained on large data sets. These large language models, and
the generative Al that rely on them, are a form of artificial
neural networks and can have trillions of parameters. Large
language models facilitate natural language processing
(NLP), which analyzes and predicts LLM text patterns.
These LLMs can be fine-tuned to specific Al applications.
For instance, generative Al chatbots are derived from foun-
dational LLMs; the chatbots are intelligent (autonomous)
agents that apply generative adversarial networks (GANS).
Intelligent agents are fine-tuned from generative Al (GenAl)
to perform certain functions, such as problem solving,
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pattern matching or prediction. These Al operations are
useful for application to medical models. As an example,
GPT is an acronym for generative pre-trained transform.
These GPTs, or transforms, enable the tracking of connec-
tions between proteins and genes. From the analyses of
structural proteomic patterns, the transforms can make pre-
dictions of protein folding.

[0949] Machine learning is applied to medical models by
applying algorithms, or instructions that provide a recipe for
machines to analyze data, execute tasks and make decisions.
Al algorithms are classified as supervised, unsupervised and
reinforcement learning.

[0950] Al algorithms can be tailored for medical models to
supply personal medicine solutions. Algorithms are applied
to medical models for pattern matching, problem analysis,
progression analysis, personalization and prediction. In the
case of pattern matching, medical model algorithms are
structured for problem finding, that is, to identify an
anomaly in genetic or protein structures. The medical model
algorithms are then configured for problem solving in order
to analyze the problem, typically by applying classification
and sorting techniques. The medical model algorithms per-
sonalize the medical model to a particular patient by fine-
tuning the model in order to provide a level of customiza-
tion; for example, the algorithms endeavor to match a cure
to a specific patient disease. The medical model algorithms
are organized to make predictions; in the context of prog-
noses of diagnoses and therapeutics, the algorithms analyze
prediction scenarios within a range of probabilities. To make
predictions, the algorithms apply progression analysis
within the constraints of limited information. The medical
model algorithms are programmed to automate processes
with Al, ML, DL and GenAl techniques.

[0951] Guided by Al medical models are even better able
to identify risk scenarios—including the statistical chances
of each scenario—very well. If a patient engages in
unhealthy behaviors, a disease can be tracked in a negative
scenario, whereas if a patient engages in healthy behaviors,
a disease can be tracked in a positive scenario.

[0952] By applying inference algorithms, the medical
models also supply risk-based predictions of patients and are
able to supply healthy behavior recommendations. Disease
progression scenarios can sometimes be contingent on spe-
cific inputs. Medical models can then be applied to antici-
pate or predict specific disease scenarios based on different
inputs. Medical models can then update its prognostics
scenarios with new data inputs.

[0953] While medical models and Al algorithms are useful
for diagnostics and prognostics, they are also applicable to
therapeutics. Medical models can also anticipate optimal
health scenarios with application of precision therapeutics.
[0954] Before the discovery of DNA, it was impossible to
trace the source of a disease to its cause. But with the
deciphering of the human genome, we now have the tools to
observe the genesis of disease with great specificity. Each of
thousands of genes can be damaged in different ways and
thus embody mutations that generate uniquely dysfunctional
proteins. These dysfunctional proteins manifest in each
individual’s distinctive disease manifestation. Without
understanding precisely which gene is mutated and exactly
how this mutation is manifest, it is not possible to find a
solution to this disease.

[0955] The medical modeling architecture is comprised of
a typology of modeling categories. The medical modeling
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typology is generally organized into several main groupings.
These modeling categories are shown on thirteen levels,
with each level pertaining to a class of biomedical phenom-
ena. Level 1 includes general patient models. Level 2
includes diagnostics, bioinformatics, organ and body system
analyses. Level 3 includes molecular and cellular descrip-
tion and analysis. Level 4 includes structural genetic variant
combination pathology identification. Level 5 includes func-
tional molecular and cellular pathology diagnosis. Level 6
includes diagnostic prognostics simulations. Level 7
includes general therapy solutions. Level 8 includes unique
therapy solution genesis. Level 9 includes therapy option
testing and simulations. Level 10 includes therapy predic-
tion scenarios for therapeutic prognostics. Level 11 includes
unified patient modeling that integrates other levels into an
integrated model. Level 12 includes human population mod-
eling that provides a platform for public medicine. Level 13
(0) includes master individualized medical modeling that
shows a broad system view of the modeling system beyond
a single individual pathology. The main medical modeling
map is described in FIG. 1. There are extensive dynamics
between the MM categories. See FIGS. 18-30 for a descrip-
tion of these MM dynamics.

[0956] Microbiological analysis is a main feature of the
IMM system. FIG. 3 shows an RNA typology and FIG. 4
shows a list of biomarkers organized by disease types. FIGS.
6-17 show a general review of IMM biological system
analysis, particularly in the context of analyzing abnormal
proteins.

[0957] Al and ML are applied to medical modeling. ML,
GenAl, geometric deep learning (including graph machine
learning), generative GDL, novel 3D GDL and novel gen-
erative 3D GDL techniques and algorithms are applied to
IMMs for application to diagnostics, diagnostic prognostics,
therapeutics and therapeutic prognostics. FIG. 2 reviews a
typology of Al categories applied to biomedical modeling
technologies. FIG. 5 shows a protein object structure clas-
sification system and neural network type matching. General
GDL analysis is reviewed in FIGS. 31-36. 3D GNN analysis
is shown is FIGS. 37-51. LLMs are shown combined with
3D GDL in FIGS. 52-60.

[0958] Personal health assistants (PHAs) are multifunc-
tional intelligent software agents applied to IMMs. PHAs
are shown to build and analyze IMMs in order to solve
medical problems. PHAs are shown in FIGS. 66-76.
[0959] Several categories of software are described,
including an integrated health record platform that integrates
IMMs, health data management, medical patient data secu-
rity and patient relationship management. These software
categories are shown in FIGS. 61-65 and 77-81.

[0960] IMMs are applied to medical diagnostics. IMMs
are shown for personalized medicine diagnostics, biomarker
analysis, identification of novel biomarkers and develop-
ment and analysis of in silico experiments for diagnostics.
IMMs are applied to analyzing diagnostics in critical dis-
eases, including cardiovascular applications, neurological
applications and oncology applications. IMMs applied to
diagnostics are shown in FIGS. 82-98.

[0961] IMMs are applied to diagnostic prognostics,
including biomarker analysis and in silico experiments for
diagnostic prognostics. IMMs applied to diagnostic prog-
nostics are shown in FIGS. 99-110.

[0962] IMMs are applied to medical therapeutics. IMMs
are applied to drug discovery and in silico drug experimen-
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tation. IMMs applied to therapeutics are shown in FIGS.
111-115. In addition, IMMs are applied to development of
novel synthetic drug design. IMMs applied to novel syn-
thetic drug design are shown in FIGS. 116-124.

[0963] IMMs are applied to therapeutic prognostics, par-
ticularly by analyzing therapeutic prediction with feedback.
IMMs for therapeutic prognostics are shown in FIGS. 125-
139.

[0964] AI, GenAl and ML techniques are applied to each
category of medical diagnostics, diagnostic prognostics,
therapeutics (drug discovery and drug generation) and thera-
peutic prognostics.

[0965] Applications of the IMM system are made to drug
clinical trials, pre-emptive medicine, autoimmune disease
analysis and metastatic cancer analysis. IMMs applied to
drug clinal trials are shown in FIGS. 140-157. IMMs applied
to pre-emptive medicine are shown in FIGS. 158-163. IMMs
applied to auto-immune disorders are shown in FIGS. 164-
170. IMMs applied to metastatic cancer analysis are shown
in FIGS. 171-180.

[0966] FIG. 1 is a table describing medical modeling
architecture and modeling typology categories. The table
shows 13 levels and 6-7 layers for each level. Inside these
80 main categories are represented by different modeling
types. Medical models and individualized medical models
are terms typically used interchangeably. Please refer to the
description of the invention for a detailed description of FIG.
1. While the 80 categories are representative, they are not
intended to be a complete list of major categories. Moreover,
the main biomedical categories also include a number of
minor biomedical categories. In addition to a typology of
MMs, the table also refers to computational Al and ML
solution categories for each level. For example, for level 1,
LLM and NLP techniques or algorithms are applied. Simi-
larly, for level 2, GenAl, LLMs, NLP, GANs and 3D and 4D
GDL techniques or algorithms are applied. These Al tech-
nique and algorithm types, and hybrid Al algorithms, are
applied to the various layers of each respective level.
[0967] FIG. 2 is a table showing artificial intelligence
categories applied to biomedical modeling technologies.
The main Al categories of (I) Generative Al, (II) Geometric
Deep Learning, (I11) Generative GDL, (IV) 3D GDL and (V)
Generative 3D GDL are shown. Each of these Al categories
are applied to biomedical modeling technologies, particu-
larly in the context of the mechanics of A, GenAl and graph
NN functional operation in the context of describing, pre-
dicting or generating biological molecular or cellular phe-
nomena. Note the discussions in the description of the
invention and in the detailed description of the drawings at
FIGS. 31-60.

[0968] FIG. 3 is a table showing an RNA typology. The
RNA categories include post-transcriptional modification
RNAs, protein synthesis RNAs and regulatory RNAs. In
addition to specifying the RNA categories, the table also
refers to the RNA biomechanical functionality for each
category and further describes the specifications for particu-
lar RNA types.

[0969] FIG. 4 is a table showing biomarkers of disease
types. The table is organized according to disease types,
including cardiovascular diseases, neurodegenerative and
psychiatric diseases, cancer types and autoimmune diseases.
The biomarker types include a range of microRNA,
IncRNA, gene and micro-molecule types. In some cases, a
description of the biomarker effects and operating mecha-
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nisms are provided. Note that these biomarkers are refer-
enced in the context of specific C/V, neurodegenerative,
cancer and autoimmune diseases analyzed in IMMs in the
present invention.

[0970] FIG. 5 is a table showing a protein object structure
classification system and neural network type matching.
Several classes of molecular objects are shown, including
2D objects (genes and RNA) for description and prediction,
2D to 3D proteins (and amino acids and peptides) for
description and prediction, 3D protein structure (healthy and
abnormal proteins) for description and prediction, 3D pro-
tein structure to 4D function (healthy and abnormal proteins
and cells) for description and prediction, generation of novel
RNA and protein structures and prescription of custom RNA
and protein structures. Each of these biomolecular and
cellular object categories references a corresponding set of
Al techniques applied to IMMs. The IMMs apply the
GenAl, 2D GDL, 2D Gen GDL, 3D GDL and 3D Gen GDL
categories to respective protein object types.

[0971] FIGS. 6-17 show a general review of IMM bio-
logical system analysis, particularly in the context of ana-
lyzing abnormal proteins. FIG. 6 is a block diagram of the
general medical modeling system architecture. The IMM
(648) is shown receiving data from a bio LLM (602),
biomedical research (articles) (604), medical databases
(606), patient biological data (608), patient genomic data
(610), patient biomarker data (612) and integrated health
record platform (IHRP) (616). In addition, the IMM receives
Al techniques and algorithms (616). The IMM conducts in
silico experiments (618), including diagnostics (620) and
therapeutics (622) analyses. The IMM develops models for
diagnostics, (624), diagnostic prognostics (626), therapeu-
tics (628), novel synthetic therapeutics (630) and therapeutic
prognostics (632). The diagnostics and diagnostic prognos-
tics are applied to pre-emptive medicine (634). The diag-
nostic prognostics, therapeutics, novel synthetic therapeutics
and therapeutic prognostics are applied to drug clinical trials
(636). The diagnostics, diagnostic prognostics, therapeutics,
novel synthetic therapeutics and therapeutic prognostics
modeling types are applied to C/V diseases (638), neurode-
generative diseases (640), cancer (642), autoimmune dis-
eases (644) and genetic and orphan diseases (646).

[0972] FIG. 7 is a diagram illustrating a comparison of
healthy protein structure and unhealthy protein structure
models. Model 1 (701) refers to the reference model from an
LLM. In this model, healthy DNA (705) is shown to be
transcribed (740) to RNA (710) and the RNA is shown to be
translated (745) to an optimized protein structure (715). In
the context of the LLM, the LLM predicts the healthy
protein structure from the DNA or RNA sequence data. In
model 2 (720), mutated DNA (725) is shown transcribed into
abnormal RNA (730) and the abnormal RNA is shown to be
translated into a dysfunctional protein structure configura-
tion (735). The two models are then compared (750) in order
to show the relationship between the healthy protein struc-
ture and the abnormal protein structure.

[0973] FIG. 8 is a diagram showing dysfunctional protein
structural functionality. A mutated DNA (805) is trans-
formed into abnormal RNA (810) and into dysfunctional
protein structure (815). The dysfunctional protein structure
configuration is shown with dysfunctional protein opera-
tions (820). The dysfunctional protein operations are then
shown in the context of dysfunctional protein interactions
(825) and dysfunctional protein operations in cells (830).
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From the dysfunctional protein operations in cells, the
process shows the dysfunctional protein operations in cel-
lular protein network pathways (835). These processes show
the transformation from a mutated gene to an abnormal
protein structure and then from an abnormal protein con-
figuration to dysfunctional protein operational dynamics in
cells.

[0974] FIG. 9 is a diagram showing dysfunctional protein
outcome probabilities. A mutated gene is shown with two or
more variants (905). The mutated gene then produces abnor-
mal RNA with two or more variants (910). There are four
different possible scenarios for production of dysfunctional
protein configurations, particularly A (915), B (920), C (925)
and D (930). Scenario A has a 15% probability of developing
from the gene and RNA variants. Scenario B has a 25%
probability of developing from the gene and RNA variants.
Scenario C has a 35% probability of developing from the
gene and RNA variants. Scenario D has a 25% probability
of developing from the gene and RNA variants.

[0975] FIG. 10 is a diagram showing 3D and 4D models
of abnormal protein structure and function. IMMs (1010)
produce at least one 3D model of abnormal protein structure
geometrical configurations (1020), 4D simulations of opera-
tional processes of abnormal proteins (1030), 4D simula-
tions of abnormal protein interactions (1040) and 4D simu-
lations of dysfunctional protein expression in intracellular
protein pathways (1050).

[0976] FIG. 11 is a diagram showing IMMs analyzing
abnormal protein structure and configuring solutions. Data
for abnormal protein structure analysis (1105) and abnormal
protein function analysis (1110) are input into an IMM
(1120). The IMM generates a model to reverse engineer a
protein solution to an abnormal protein problem (1125). A
solution is applied in the form of a synthetic protein to solve
an abnormal protein problem (1130). A solution is applied in
the form of RNA instructions to encode for a novel protein
to correct for a protein abnormality (1135).

[0977] FIG. 12 is a diagram showing IMM analysis of
biomarkers to identify patient pathology. The patient con-
dition evolution is shown at 1210, 1215, 1220, 1225 and
1230. At stages 1215, 1220 and 1225, 3D RNA and protein
structure biomarkers are assessed (1235). The IMM assesses
the snapshot data (1240) at each stage and develops 4D
simulations of dysfunctional protein interactions and abnor-
mal cell dynamics (1245). From these analyses, the IMM
describes the biomolecular anatomy and physiology of the
source of a patient pathology (1250).

[0978] FIG. 13 is a flow chart showing the process of
disease discovery utilizing IMMs. Once an IMM obtains
gene and RNA sequencing data, a model identifies genetic
mutations (1310) and biomarker data are analyzed in order
to ascertain abnormal protein structures (1320). The IMM
generates a list of gene and RNA mutations and dysfunc-
tional DNA, RNA or protein biomarkers (1330). The IMM
then generates a table to compare the biomarker data to
healthy protein or biomolecular data (1340) and the IMM
compares the healthy biomarker data to abnormal protein
structure and function data (1350). The IMM then analyzes
dysfunctional protein interactions and protein pathway
mechanics from the biomarker analyses (1360). The IMM
identifies and validates specific protein target(s) as a source
of a patient’s disease (1370) and the IMM tracks a disease
progress by tracking biomarkers over time and updating the
model delineating the patient pathology (1380).
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[0979] FIG. 14 is a flow chart showing the process of
moving from diagnostics to therapeutics by utilizing IMMs.
An IMM identifies DNA and RNA variant data from next-
generation sequencing (NGS) analyses (1410) and the IMM
identifies biological LLMs in order to identify healthy
protein structure prediction models (1420). The IMM iden-
tifies abnormal protein structure and/or abnormal protein
function model data (1430) and the IMM further identifies
and assesses a patient’s RNA, protein and small molecule
biomarkers (1440). The model compares healthy versus
abnormal protein interactions, including protein-protein,
protein-small molecule, protein-disease and protein-drug
interactions (1450). The IMM accurately identifies and
describes the abnormal protein(s) that cause the patient
pathology (1460) and the IMM applies GenAl techniques or
algorithms to develop a novel synthetic protein to design a
drug to solve the abnormal protein pathology (1470).
[0980] FIG. 15 is a diagram showing IMMs applied to
personalized medicine to assess a patient’s disease diagnosis
and prognosis. Several classes of data are imported into
IMMs. These data include data from biological and medical
databases accessed to describe healthy molecular and cel-
lular structure and functions (1510), biological LLM data to
predict healthy molecular structures (1520), DNA, RNA and
protein sequence data on each individual that develops a
map of individual pathology (1530) and biological sequence
data applied to identify biomarker data over time of indi-
vidual patient pathologies (1540). The combination of these
data sets is imported into an IMM that develops models of
individual patient pathologies (1550). The IMM models
compare gene and biomarker data of each patient to bio-
medical databases and biological LLMs (1560). The IMM
analyzes patient biomarker data to track disease progress
(1570).

[0981] FIG. 16 is a diagram showing a database table
describing abnormal protein expression on a spectrum. A
mutated gene (1602) is shown developing into an abnormal
protein (1604). The table (1606) shows six different muta-
tion types (A-F) and subtypes X (1-9) and Y (1-9) of each
mutation type.

[0982] FIG. 17 is a flow chart showing the process of
applying IMMs to identify therapeutic solutions to unique
pathologies. After an IMM identifies a unique gene, RNA
and/or protein dysfunction as a source of disease, the IMM
accesses bio databases to obtain a reference for optimum
molecular health for comparison of patient disease (1705).
Once the IMM identifies the optimal existing drug options to
solve a patient disease, the IMM ranks the drug options and
selects an optimal drug therapy (1710). If a drug candidate
is applied and unsuccessful, the IMM generates a novel
synthetic drug solution (1715). The IMM applies Al tech-
niques or algorithms to identify novel drug solutions (1720)
and the IMM applies in silico experiments to identify a
unique drug solution (1725). After a drug is applied to a
patient, the IMM identifies biomarkers to track therapeutic
prognosis (1730) and the IMM predicts a specific drug’s
effects on the patient disease (1735).

[0983] FIGS. 18-30 show IMM category dynamics. FIG.
18 is a diagram showing IMM categories. In FIG. 18, object
MMs (1805) are configured to identify and describe object
structures (1820), including protein, cell, organ and drug
structures. Process MMs (1810) are configured to describe
4D functional biomedical processes (1825). System MMs
(1815) are configured to describe unified models that may
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include combinations of biomedical components (1830). In
additional MM categories, MMs may predict biochemical
phenomena or behaviors and MMs may generate novel
synthetic biochemical phenomena.

[0984] FIG. 19 is a diagram showing the medical model-
ing architecture outline with data pipelines. FIG. 19 shows
the IMM architecture structure from FIG. 1, with data
pipelines received at each corresponding level (1-13).
[0985] FIG. 20 is a diagram showing IMMs as active
models. The IMM (2020) is shown receiving data from
biological or medical databases (2005), at least one biologi-
cal LLM (2010) and patient biomarker data (2015). The
IMM interacts with patient databases (2025). The IMM
generates analytical experiments (2030). From the analytical
experiments, the LLM generates patient models (2035).
[0986] FIG. 21 is a diagram illustrating databases input-
ting data into an IMM that generates models. Three data-
bases—DB 1 (2105), DB 2 (2110) and DB 3 (2115) input
data into the IMM (2120). The IMM generates models 1-6
(2125, 2130, 2135, 2140, 2145 and 2150). Model 1 is shown
providing data to DB 1. Model 2 is shown providing data to
DB 2. Model 3 is shown providing data to DB 3.

[0987] FIG. 22 is a diagram showing PHAs performing
functions in IMMs. Patient medical data (2205) are imported
via PHAs (2215) into a medical database (2210) and then
into an IMM (2220). The PHAs (2225) build models for
diagnostic (2230) and prognostic (2235) analyses. PHAs are
applied to building and analyzing IMMs. Please refer to
FIGS. 27 to 30 and 66 to 76 for further descriptions of PHAs
and their operational dynamics.

[0988] FIG. 23 is a diagram showing data flows between
layers of the IMM system. The table (2305) shows the
general structure of the IMM architecture. In this drawing,
the layers within each level process data from the initial
layer to successive layers.

[0989] FIG. 24 is a diagram showing IMM inter-layer
dynamics of layers within each level. The table (2405)
shows the layers within each level sharing data with multiple
layers within each respective level. In an embodiment, a
second layer of each level shares data with multiple layers;
a third layer of each level share data with multiple layers,
etc.

[0990] FIG. 25 is a diagram showing intra-level data
sharing within the IMM system. The table (2505) shows
relations between levels. The diagnostic categories of Levels
2-5 share data between themselves and the diagnostic cat-
egories share data with the diagnostic prognostic categories
of Level 6. Similarly, the therapeutic categories of Levels
7-9 share data between themselves and the therapeutic
categories share data with the therapeutic prognostic cat-
egories of Level 10.

[0991] FIG. 26 is a diagram showing dynamics of rela-
tions between layers of different levels. The table (2605)
shows data shared between diagnostic Levels 4 and 5 and
therapeutic Levels 7 and 8.

[0992] FIG. 27 is a diagram showing PHAs facilitating
two or more simultaneous data exchanges between layers.
Multiple modeling categories can be activated simultane-
ously. In FIG. 27, the table (2705) shows several modeling
categories activated on diagnostic levels 4 and 5, on the
diagnostic prognostic level 6 and on the therapeutic levels 8
and 9. The therapeutic levels receive diagnostic data in order
to analyze the data to generate therapies.
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[0993] FIG. 28 is a diagram showing the simultaneous
processing of two or more MMs or simulations in the IMM
system. FIG. 28 shows the table (2805) with levels 4 and 5
and 8, 9 and 10 analyzing data simultaneously. These
simultaneity features optimize system efficiency.

[0994] FIG. 29 is a diagram showing the application of
APIs between levels and PHAs between layers of some
levels connecting MM types in the IMM system. In the table
(2905) in FIG. 29, APIs 1-5 are shown connecting levels 2-7.
While they are shown here connecting levels 2-7, APIs
connect all levels. In addition, PHAs are shown connecting
models in different layers within each level. While they are
shown here connecting data in layers of levels 2-7, PHAs
may be applied to data in all categories in the MM system.
The APIs and PHAs may work together. These software
program elements are organized to work together in order to
manage the reception and analysis of data in the model
categories in the modeling system.

[0995] FIG. 30 is a diagram showing two or more models
on two or more layers communicating data to other models
on different layers in the IMM system. The table (3005) in
FIG. 30 shows sets of layers combined into specific aggre-
gated groups of model categories. These specified aggre-
gated groups communicate data to other aggregated groups
of model categories. In this example, modeling categories in
Layers 2-4 on Level 3 communicate data to modeling
categories on layers 4-5 on Level 4, which communicate
data to modeling categories on layers 2-3 on Level 5. The
aggregated group of layers 2-3 on Level 5 then send data to
modeling categories on layers 3 and 4 on Level 7 and to
modeling categories on layers 2 and 4 on Level 8. The
modeling categories on Level 7 send data to modeling
categories on layers 3-5 on Level 9 and layers 1-2 on Level
10. Similarly, modeling categories on layers 2-3 on level 8
send data to modeling categories on layers 3-5 on Level 9
and to modeling categories 1-2 on Level 10.

[0996] GenAl has the advantage of enabling graphics
visualization. GenAl can present simulations or animations
of healthy gene, protein and cell pathways. An animation is
a functional representation of object relations over time.
These animations can present different levels of simulations,
from cellular interaction simulations and gene-to-protein
simulations to protein-protein pathway simulations.

[0997] While it is useful to model and simulate healthy
biochemical and cellular processes, it is optimal to model
and simulate dysfunctional biochemical and cellular pro-
cesses because this is the source of many diseases. These
GenAl powered simulations are well suited to convert data
from the medical model into precise diagnostic simulations
to show the effects of specific genetic mutations on protein
structure development and function as well as the effects of
dysfunctional protein development on cellular operations.
[0998] In addition to these useful simulations, the medical
modeling system is beneficial in applying GenAl to develop
simulations of treatment options and prognostic probabilis-
tic scenarios under different conditions. By generating simu-
lations with GenAl powered agents, the medical modeling
system investigates and conducts experiments to demon-
strate proposed precision therapies.

[0999] Al s applied at each level of the MM spectrum. Al
is applied, for instance, to the process of gathering health-
care data for a patient. Al is also applied to analytics in the
context of problem finding in order to develop a precision
diagnosis. Al is applied to the problem-solving context of
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seeking medical therapies. Finally, Al is applied to the
prediction context of diagnostic and therapeutic prognoses
in order to track a disease.

[1000] Not only is Al, including GenAl, neural networks,
deep learning and machine learning applied to medical
models, but different mathematical calculations are applied
to medical models as well. These mathematical equations
include algebraic calculations, differential equations and
calculus. Calculus in particular is useful in order to identify
temporal phenomena of molecular and cellular behaviors.
Differential equations are useful for solving problems with
incomplete information.

[1001] While the application of mathematics is critical to
study medical models, the application of computers is criti-
cal as well. Specifically, particular semiconductors are use-
ful to perform sophisticated modeling. These chips include
GPUs, ASICs, FPGAs, CPLDs, TPUs, CPUs, SoCs and
neuromorphic circuits. In addition to these logic circuits,
advanced memory circuits, particularly DRAM, SRAM and
high bandwidth memory (HBM) circuits are useful com-
puter hardware components. The advent of supercomputer
level GPUs in particular in the last year have advanced the
field of medical models. The Nvidia H100 (and H200) series
[and GH100 (and GH200) [combine GPUs with CPUs])
series], the B100 series, the R100 series and X100 series
(and beyond) are powerful circuits, arranged in ASIC arrays,
with from eighty billion transistors (H100) and two hundred
billion transistors (B100) to a projected trillion (or trillions)
transistors in coming years. Also, GPUs from AMD (MI300
[150B transistors] and MI400 families, etc.) and Intel (Gaudi
3, Falcon Shores, etc.) are useful in developing modeling
hardware. When combined with multiple advanced (version
3, 3E, 4, 4E, etc.) HBM memory circuits (from Micron,
Samsung and SK Hynix), these advanced logic circuits are
beneficial in developing inference and training of large data
sets. The trillion-transistor logic circuit is enabled in part by
multi-layer semiconductor packaging. The advent of sub-3
nm CPUs, microprocessors and SoCs have also advanced
computer modeling technologies.

[1002] A new era in computing began in 2023. Whereas
before 2023, terabyte and petabyte scale computing were
possible in order to generate individualized medical models
in discrete computing apparatuses, in 2023, the Al revolu-
tion changed the traditional computing paradigm. The
advent of powerful GPUs enabled rapid analysis of data sets
for GenAl modeling. After 2022, the computing paradigm
focused on large data centers consisting of large GPU
clusters capable of exabyte and zettabyte computing func-
tionality. Millions of logic circuits, each possessing hun-
dreds of billions and trillions of transistors, are now aggre-
gated in vast networks of data centers. Instead of a single
supercomputer calculating medical models for each indi-
vidual’s personalized medical model at great expense, we
see data centers renting computer time to third party vendors
that enable physicians and researchers to access comput-
ability in order to create sophisticated models and simula-
tions. It is projected that within a decade about ten percent
of electricity in industrial countries could be allocated to
data centers. In light of these developments, the yottabyte (a
million times exabytes, which are a million times terabytes)
era is inevitable. In order to manage these massive data sets,
it will be necessary to apply compression and decompres-
sion algorithms (as well as encryption and security algo-
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rithms) at computing and communications junctions in order
to optimize real-time medical modeling.

[1003] While computer modeling, including medical mod-
eling, goes beyond large language model (LLM) analyses,
these LLM training and inference tasks represent a new
paradigm in computer modeling functionality. Of course,
medical models represent a graphic modeling approach,
which is well suited to GPUs, FPGAs and ASICs. But the
massive computing power only available in these recent
advanced semiconductors enable the work that previously
was performed by large supercomputers in weeks to be
performed in a cluster of a dozen or fewer GPU chips in
hours. As an analogy, while the human genome was decoded
in 2000 at a cost of millions of dollars, currently a human
genome can be decoded for less than $1000. The advent of
a new generation of GPUs enables the possible construction
of human medical models for less than $1000 in the next
decade. Slices of a human MM (that is, small parts of a
medical model accessed for a particular purpose) can be
obtained and analyzed for less than $100.

[1004] Medical models are accessed by physicians,
researchers, administrators and patients via desktop com-
puters, laptop computers, tablet computers and smartphones.
The modeling system is accessed via the internet in most
cases, while modeling data and databases can be stored in
user computer systems and data center computer systems.
The data center computers are accessible by using software
as a service (SaaS) in many cases. The medical modeling
system is accessible using operating systems and software
graphic user interfaces from Apple, Microsoft, open source
vendors and various third party vendors. The GUIs utilize a
programmable dashboard for managing MM operations. The
medical modeling system can be accessed with wireless
(3G, 4G, 5G, 6G, etc.) and hard-wire (copper or fiber optic)
communications networks.

[1005] Artificial intelligence, machine learning and deep
learning are key features of the present invention. General
geometric deep learning (GDL) analysis is reviewed in
FIGS. 31-36. 3D graph neural networks (GNN) analysis and
3D GDL analysis are shown in FIGS. 37-51. Generative 3D
GDL, which combine LLMs with 3D GDL are described in
FIGS. 52-60. Also note the discussion above on general Al
and ML analysis in the description of the invention.
[1006] FIG. 31 is a diagram showing GDL techniques
applied to analyze protein and cellular geometric properties.
RNA-protein translation (3105), protein structures (3110),
protein pathway mapping (3115), protein-protein interac-
tions (3120), protein-ligand interactions (3125), protein-
lipid interactions (3130), protein-small molecule interac-
tions (3135) and cellular component mapping (3140) are
examples of microbiological phenomena and processes to
which GDL techniques (3150) are applied to describe geo-
metrical properties (3155) in MMs (3145).

[1007] FIG. 32 is a diagram showing GDL techniques
applied to identify abnormal gene, RNA and protein geo-
metric properties. A mutated gene (3205) is transcribed into
a dysfunctional RNA (3210) and into an abnormal protein
(3215). GDL techniques or algorithms are applied in MMs
(3220) to analyze the mutated gene, the dysfunctional RNA
sequence and the abnormal protein structure in order to
identify abnormal geometric properties (3225).

[1008] FIG. 33 is a diagram showing GDL techniques
applied to compare abnormal proteins to optimal proteins.
MMs (3305) apply GDL techniques (3315) or algorithms to
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analyze abnormal protein structure (3310) and an optimal
(healthy) protein structure (3320).

[1009] FIG. 34 is a diagram showing GDL techniques
applied to predict anomalous protein structure and function.
MDMs (3430) apply GDL techniques (3435) or algorithms to
predict anomalous protein structure and function of a
mutated gene (3405), an abnormal protein structure (3410)
and dysfunctional protein function of a protein (3425) with
other proteins (3415 and 3420).

[1010] FIG. 35 is a diagram showing graph neural network
general architecture. Data describing an input object (3505),
such as a protein structure, is input into the input graph
(3510). The data are next input into the hidden layers of the
GNN (3515, 3520 and 3525). The data are then input into the
classification layer (3530) and into the output layer (3535) of
the GNN. The output layer data describing or analyzing the
input object is then input into a transformed graph (3540)
and then input into an IMM (3545) for analysis.

[1011] FIG. 36 is a diagram showing graph representation
of an input object in a GNN. An input object (3605), such as
a protein structure, is input into a graph representation of
nodes and edges (3610) and into the Graph Neural Network
(3615) which consists of at least four layers.

[1012] GDL and GNN algorithms are applied to descrip-
tion of biomedical entity structures and functions, such as
molecular bio sequences including DNA and RNA struc-
tures, protein structures, functions and interactions and
cellular anatomy and physiology. In particular, these algo-
rithms describe mutated DNA, abnormal RNA and dysfunc-
tional protein structure and function. The GDL and GNN
algorithms are optimized for biomedical diagnostics. In
addition, GDL and GNN algorithms are applied to predic-
tion of molecular and cellular behaviors.

[1013] 3D GDL and 3D GNN algorithms are similarly
applied to description of biomedical phenomena structures
and functions, but add the third dimension of the Z axis in
order to optimize the precision of the descriptive and pre-
dictive analyses.

[1014] General graph neural networks, including 3D
GNN, describe and predict objects in graphs to analyze node
and edge relations. While GNNs (and GDL) are a general
class of neural networks, there are several sub-categories of
neural networks within the general class, each with a dif-
ferent focus. Graph convolutional NNs (GCNNs) apply
filters to analyze node and edge relations. Graph attention
networks (GATs) apply weighted nodes to analyze nodes
and edge relations; GATs apply attention to particular clus-
ters of nodes and/or edges to focus the analyses. Manifold
valued neural networks (MVNNs) analyze spherical objects
and curved surfaces. Graph of graph neural networks (GoG-
NNs), or equivariant graph of graph neural networks (EGG-
Nets), analyze nodes and edges as micro graphs in order to
test hypotheses and analyze protein structures and relations.
Graph auto encoders (GAEs) encode and decode search
space to predict object functions. Each of these categories of
GNNSs have a 3D graph neural network application. Each of
these 3D GNN techniques and algorithms are applied to
different aspects of protein structure, function and interac-
tion analysis. These techniques may be combined into
hybrid synthetic GDL applications.

[1015] 3D GNNs are applied to analyze abnormal protein
structure, identification of an RNA solution to an abnormal
protein, drug-target binding prediction and protein interac-
tion prediction. 3D GCNNs are applied to analysis of



US 2025/0322963 Al

abnormal protein interaction description and prediction,
peptide binding solutions for abnormal proteins, identifica-
tion of projection options for abnormal protein solutions and
identification of RNA solutions to abnormal protein con-
figurations. 3D GATs are applied to analysis of abnormal
proteins in a graph of weighted set of nodes and edges in X,
Y and Z axes, active 3D experimentation of abnormal
protein structure, function and interactions, analysis of pep-
tide binding solutions for abnormal proteins, prediction of
abnormal protein functions and projection of abnormal
protein solution options. 3D MVNs are applied to analysis
of protein folding geometries, curved protein bonds and
interactions, curved protein surfaces, abnormal protein bind-
ing with proteins, lipids and ligands, abnormal protein
interactions, and prediction of peptide binding solutions. 3D
GoGNNss are applied to analysis of abnormal protein struc-
tures to test hypotheses of node relations, to peptide binding
to repair abnormal proteins, to predict drug-target interac-
tions and to project abnormal protein solution options. 3D
GAEs are applied to analyze, describe or predict abnormal
protein relations to analyze abnormal protein binding and to
predict abnormal protein interactions. See the tables in
FIGS. 2 and 5 for a reference to 3D GDL and 3D GNN types
and their biomedical applications.

[1016] FIG. 37 is a diagram showing a 3D graph repre-
sentation of a 3D graph neural network input. Data on an
input 3D object (3705), such as a protein structure, is input
into a 3D graph representation (3710) of nodes and edges as
the 3D graph converts the object to 3D graph representation.
The data are then input into the 3D GNN (3715), which
includes at least three layers. After the data are analyzed in
the 3D GNN, they are output into the IMM (3720).

[1017] FIG. 38 is a diagram showing a 3D GNN analysis
of a 3D object and prediction of node connections. Data on
a 3D object (3805) are input into multiple layers of a 3D
GNN (3810). The 3D GNN makes 3D object node connec-
tion predictions (3815).

[1018] FIG. 39 is a diagram showing 3D GNN with
convolutional layers to output probabilistic options, with
convolution layers applying different filters. Data on a 3D
object (3905), such as a 3D protein structure, is input into a
3D graph as a 3D graph representation conversion (3910).
The 3D graph is input into a 3D graph NN (3915) and into
several convolution layers of the 3D GNN (3920, 2925 and
3930). The convolution layers input data into connected
layers (3935) and into a probabilistic output layer (3940).
From this output layer, the data are input into the IMM
(3945). In an embodiment, note that convolution layers
apply different digital filters.

[1019] FIG. 40 is a diagram showing a 3D object con-
verted to a 3D matrix and layer sampling for conversion to
a 3D graph. Data on a 3D object (4005), such as a 3D protein
structure, are input into a 3D matrix (4010). The data are
input into three layer sampling (4015), into a 3D graph
(4020) and into a GNN (4025). The GNN may be 2D or 3D.
This process of converting data on a 3D object into a 3D
graph for input into a 3D GNN prepares the digital object for
analysis in the GNN.

[1020] FIG. 41 is a diagram showing a 3D object con-
verted to a 3D graph and nodes weighted in preparation for
3D GAT NN. Data on a 3D object (4105), such as a 3D
protein, is input into a 3D graph representation (4110). The
nodes (W1 to W7) in the graph (4115) are weighted. These
weighted object node representation data are input into NN
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hidden layers (4120) 1-3 and then into an output layer
(4125). The output layer inputs the 3D object data analysis
into the IMM (4130).

[1021] FIG. 42 is a diagram showing connections between
3D object nodes that are weighted and messages sent
between nodes in a 3D GAT NN. Data on the connections
between 3D object nodes (W1-W8) (4205) are weighted.
The weighted node connections then send messages between
nodes (H1-H4) in the 3D object analysis (4210). The 3D
object data are then sent to GNN hidden layers (4215) 1-3
for analysis and to the output layer (4220) and to the IMM
(4225).

[1022] FIG. 43 is a diagram showing attention scores
aggregated for nodes and connections for presentation to 3D
GAT NN. Data on the 3D object nodes in a 3D graph (4305)
and the 3D object connections between nodes in a 3D graph
(4310) are converted to attention vectors for nodes (4315)
and attention vectors for connections (4320). The node and
connection data are then input into a matrix for attention
scores (4325) and into a 3D GAT NN input layer (4330). The
data are input into 3D GAT NN hidden layers (4335) 1-4 and
into an output layer (4355). These data and analyses are then
input into the IMM (4360).

[1023] FIG. 44 is a diagram showing a 3D GNN with
convolutional and GAT hybrid configuration to predict pro-
tein interaction. Data on gene, RNA and/or protein biomark-
ers (4405) are converted into an abnormal protein 3D
structure (4410). These data on abnormal protein 3D struc-
ture and data from a protein LLM (4415) are input into a 3D
protein structure graph representation (4420). These data on
a 3D protein are input into a 3D graph NN (4425) and into
a 3D matrix (4430). These data are input into three convo-
lution hidden layers of the GNN (4435, 4440 and 4445) and
then into an output layer (4450). The GNN generates protein
interaction prediction scenario options (4455) and inputs
these data into the IMM (4460).

[1024] FIG. 45 is a diagram showing a 3D graph of graph
NN inputting two types of node and connection analyses.
Data on a 3D object (4505), such as a 3D protein structure,
are represented as 3D nodes (4510) and 3D connections
(4515). The 3D nodes are input into a graph convolution of
nodes (4520) and into hidden layers (4525). The 3D con-
nections are input into attention vectors for connections
(4530) and into hidden layers (4535). The two sets of hidden
layers are input into a 3D GoGNN (4540), which outputs an
analysis of probabilities of prediction (4545).

[1025] FIG. 46 is a diagram showing two types of vectors
analyzed in a 3D GoGNN. Data on a 3D object (4605) are
input into a 3D graph (4610). The node vectors (4615) and
connection vectors (4620) are input into the matrix for
vector analysis (4625) and are then input into hidden lay-
ers—node vectors into hidden layers (4635) and connection
vectors into hidden layers (4630). These data are input into
convolution layers (4640) and into the 3D GoGNN (4645)
and output (4650). The output data enables the NN to make
predictions (4655) about objects and object relations, which
are entered into the IMM (4660).

[1026] FIG. 47 is a diagram showing a 3D autoencoder
GNN model. Data on a 3D object (4705), such as a 3D
protein structure, are input into a 3D graph (4710). These
data are input into a 3D GNN with N hidden layers (4715)
for encoding. The encoder layers include a node matrix
(4720), connection matrix (4725), weight matrix (4730) and
message matrix (4735). These data and analyses are input



US 2025/0322963 Al

into a latent space (4740) and into a 3D GNN with N hidden
layers for decoding. These decoding layers may include
corresponding node matrix (4750), connection matrix
(4755), weight matrix (4760) and message matrix (4765) in
the decoder. These data are input into a 3D matrix (4770)
and output. The output data of the 3D autoencoder GNN
may be input into an IMM.

[1027] FIG. 48 is a diagram showing a 3D MV-GNN of a
3D abnormal protein with curved surfaces. Data on a 3D
abnormal protein structure (4805) are input into a 3D graph
of a curved surface (4810) which outputs data analyzing
node vectors (4815), connection vectors (4820) and message
vectors (4825). The vectors and vector analyses are input
into a vector matrix (4830) and into convolution layers
(4835) and hidden layers (4840) 1-3. These data and analy-
ses are input into a 3D MV-GNN output layer (4845) and
then into an IMM (4850). The MV-GNNSs are well suited to
analysis of curved surfaces of complex protein 3D structures
which contain novel non-Euclidean description challenges.
[1028] FIG. 49 is a diagram showing a protein LLM
comparing healthy protein structure data to abnormal protein
structure data. A protein LLM (4905) analyzes protein
structures, with the protein LLM predicting protein folding
configurations from RNA sequence data (4910). The protein
LLM generates healthy protein structure data to compare
abnormal protein structure data (4915) and a GNN identifies
an abnormal protein structure (4920).

[1029] FIG. 50 is a diagram showing a 3D GNN analyzing
an abnormal protein structure. Data from a 3D abnormal
protein (5005) are input into a 3D GNN (5010) and con-
verted to a 3D graph representation (5015). The data are
input into 3D GNN hidden layers (5020) 1-3. Data from a
protein LLM (5025) on health proteins are input into the 3D
GNN for comparison to the abnormal protein. The abnormal
protein data are input into a 3D graph matrix (5030) and to
an output GNN layer (5035). The data on the abnormal
protein structure (5040) and analysis are input into an IMM
(5045).

[1030] FIG. 51 is a diagram showing a 3D GNN analyzing
abnormal protein structure to generate solution options. A
protein LLM (5105) outputs data on protein folding predic-
tion of a healthy protein structure (5110), which data are
compared to abnormal protein structure (5115). These data
identify an abnormal protein structure in a 3D GNN (5120).
A 3D GNN develops models to repair or replace abnormal
protein solutions (5125). An RNA LLM (5130) outputs data
to an RNA structure prediction of a healthy RNA sequence
(5135), from which data a 3D GNN develops models to test
RNA to replace or block abnormal protein solutions (5140).
Once the abnormal protein structure configuration is iden-
tified, a 3D GNN may apply RNA solutions.

[1031] In an embodiment, graph isomorphism NNs are
applied to compare similar graph representations or to
highlight distinctive differences of similar graphs. In another
embodiment, 3D graph isomorphism NNs are applied as a
new class of 3D GNN.

[1032] While 3D GDL and 3D GNN algorithms are opti-
mized for analysis of mutated DNA, dysfunctional RNA and
abnormal protein structures in their descriptive mode, these
algorithms are also applied to prediction of protein behav-
iors. For example, 3D GDL and 3D GNN algorithms are
applicable to predict functional interaction behaviors of
abnormal proteins. As such, these algorithms are applied to
project abnormal behaviors of abnormal proteins generated
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from abnormal genes and RNA. 3D GDL and 3D GNN
algorithms are applied to predict an abnormal protein con-
figuration from an abnormal RNA, which is quite different
from the exercise of predicting a normal healthy protein
structure from a normal healthy gene or RNA sequence.
Protein language models are configured to predict healthy
protein structures from healthy RNA sequences but are mute
on the real challenge of predicting abnormal protein struc-
ture from abnormal RNA sequences which represent the
source of many diseases.

[1033] In addition to predicting the structure of abnormal
proteins, 3D GDL and 3D GNN algorithms are also applied
to prediction of abnormal protein functions and abnormal
protein interactions in protein networks. It is precisely this
abnormal protein functionality in protein networks that
interfere with normal protein network operation mainly due
to lack of binding to healthy proteins by abnormal proteins
that cause diseases. The nature of the dysfunctional protein
structure, function and interaction enables doctors and
researchers to diagnose the precise patient disease and to
develop a diagnostic prognosis of the disease. An analysis
and description of a unique abnormal DNA, RNA or protein
structure and function indicates optimal therapy solution
options. In many cases, the abnormal protein structure
results in failure to properly bind with other proteins or
molecules in protein networks, thereby disrupting the pro-
tein networks and manifesting as a pathology. Identifying
the precise nature of the structural dysfunction of the protein
is critical to understanding the underlying nature of a disease
and predicting the disease’s probable outcomes. Accurate
descriptions of these abnormal proteins then represent the
targets for therapeutic solutions.

[1034] While LLMs and PLMs can predict healthy protein
structures, 3D GDL and 3D GNN algorithms are applied to
predict abnormal protein structures and functions from a
mutated gene or abnormal RNA sequence. These algorithms
are applied to backwards engineer a description of the
dysfunctional RNA sequence from an abnormal protein
structure description.

[1035] 3D GDL and 3D GNN algorithms can be combined
with LLMs and PLMs in order to generate novel protein
structure in order to solve a particular problem involving a
mutated gene or abnormal protein structure. In this sense,
the combination of these technologies enables the generation
of' novel synthetic proteins. Once an abnormal protein struc-
ture is identified by a 3D GDL or 3D GNN algorithm, the
novel synthetic protein can be configured by applying the
PLM, which generates a healthy RNA sequence or a healthy
protein structure. Generative 3D GDL and generative 3D
GNN applies PLM techniques to generate novel synthetic
proteins, with the 3D GNN giving descriptive form to the
PLM analyses for protein creation. The functional applica-
tion of generative synthetic proteins is to block (i.e., inhibit)
abnormal RNA from producing abnormal proteins or pep-
tides, to repair abnormal proteins with supplemental pep-
tides or to replace a protein with a novel protein structure.
In effect, the generation of a novel synthetic protein is
related to the prediction of a healthy protein’s behavior
because the prediction of a healthy protein enables the
construction of a normal protein that becomes the target
objective of the novel protein synthesis.

[1036] FIG. 52 is a diagram showing an MM analyzing
abnormal biomarkers and comparing the abnormal biomark-
ers to healthy DNA, RNA, proteins and antibodies, with an
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MM applying 3D GDL types to construct a novel synthetic
drug to match to the drug target. Biomarkers (5205) identify
abnormal RNA (5210), abnormal proteins (5215) and abnor-
mal antibodies (5220), which data are input into an MM
(5241). DNA and RNA database (5223) data are input into
a DNA and RNA LLM (5232), protein database (5226) data
are input into a protein LLM (5235) and antibody database
(5229) data are input into an antibody LLM (5238). These
DNA, RNA, protein and antibody databases and LLMs
represent reference data, which are input into the MM
(5241). The MM applies a 3D GDL (5244) that apply
various ML algorithms involving 3D GCNN (5259), 3D
GAT (5262), 3D MVNN (5265), 3D GoGNN (5268) and 3D
GAE (5271). The MM identifies a drug target (5447) and the
ML algorithms generate a novel synthetic drug (5256),
which is applied by an MM (5250) to perform a drug-target
fit analysis (5253).

[1037] FIG. 53 is a diagram showing synthesis of an LLM
and 3D GDL to identify, generate and test a novel synthetic
protein. Biomarker data (5305) are forwarded to a 3D
GCNN (5310) and 3D MVNN (5315) to describe an abnor-
mal protein to identify as a drug target (5320). The GNNs
generate abnormal protein behavior prediction simulations
(5325). After the GNNs describe an abnormal protein to
identify a drug target, a 3D GAT compares a healthy protein
to an abnormal protein (5330). A protein language model
tests possible protein structures via in silico experiments
(5335) and protein solution candidates are generated, ranked
and selected in the protein language model (5340). The
P-LM generates a healthy novel synthetic protein candidate
to generate a prediction hypothesis (5345). These data are
input into a 3D GoGNN (5350) and/or 3D GAE (5355). The
3D GNN s test novel synthetic solution candidates (5360) by
testing and comparing protein interactions, binding and
blocking scenarios (5365). The 3D GNNs test novel protein
interactions to confirm operational effectiveness (5370). The
IMMs apply these tools to identify, generate and test a novel
synthetic protein.

[1038] FIG. 54 is a diagram showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic antibody. Biomarker data (5405) are input into a
3D GCNN (5410) and a 3D MVNN (5415) to describe an
abnormal antibody to identify a drug target (5420). The
GNNs general abnormal antibody prediction simulations
(5425). After the GNNs describe an abnormal antibody to
identify a drug target, a 3D GAT compares a healthy
antibody to an abnormal antibody (5430). An antibody
language model tests possible antibody structures via in
silico experiments (5435) and antibody solution candidates
are generated, ranked and selected in the AbLM (5440). The
AbLM generates a healthy novel synthetic antibody candi-
date to generate prediction hypothesis (5445). These data are
input into a 3D GoGNN (5447) and/or 3D GAE (5450). The
3D GNNS test novel synthetic solution candidates (5455) by
testing and comparing antibody interactions, binding and
blocking scenarios (5465). The 3D GNNs test novel anti-
body interactions to confirm operational effectiveness
(5460). After testing, the 3D GNNs select a novel synthetic
antibody (5470). The IMMs apply these tools to identify,
generate and test a novel synthetic antibody. The novel
antibody is then applied to a patient’s immune system or to
stem cells (5475).

[1039] FIG. 55 is a flow chart showing the synthesis of an
LLM and GDL to identify, generate and test a novel syn-
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thetic gene and transcription process. Biomarker data (5505)
are input into the modeling system. A GCNN or MVN
describes a mutated gene transcription to an RNA (5510). A
GAT compares a healthy gene code to a mutated gene code
(5515). Abio-LM tests possible gene code sequences via in
silico experiments (5520) and generates, ranks and selects
gene code candidates (5525). The bio-LM generates healthy
novel synthetic gene code to generate a prediction hypoth-
esis (5530). A GoGNN or GAE test a novel synthetic gene
code solution candidate (5535) and the novel synthetic gene
is applied to generate RNA and/or coding or noncoding
protein or peptide (5540).

[1040] FIG. 56 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test novel
synthetic RNA and translation process. Biomarker data
(5605) are input into a modeling system. A 3D GCNN or 3D
MVN describe mutated or abnormal RNA translation to a
protein (5610). A 3D GAT compares a healthy RNA
sequence to an abnormal RNA (5615). A bio-LM tests
possible RNA code sequences via in silico experiments
(5620). The bio-LM generates, ranks and selects RNA code
candidates (5625) and generates healthy novel synthetic
RNA code to generate a prediction hypothesis (5630). A3D
GoGNN or 3D GAE test a novel synthetic RNA code
solution candidate (5635). In silico experiments and simu-
lations show probable effects of RNA on protein interactions
(5640) and the novel synthetic RNA is applied to generate a
coding or non-coding protein or peptide (5645).

[1041] FIG. 57 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic small molecule. After a protein or antibody target
is identified (5705), a bio-LM, PLM or AbLM generates
novel synthetic small molecule solution candidates (5710).
A 3D GoGNN or 3D GAE tests a novel synthetic small
molecule solution candidate (5715) and a 3D GoGNN or 3D
GAE show probable effects of a small molecule candidate on
a protein or antibody target (5720). The novel synthetic
small molecule is applied to modify or block a protein or
antibody (5725).

[1042] FIG. 58 is a flow chart showing the synthesis of an
LLM and 3D GDL to identify, generate and test a novel
synthetic DNA, RNA, protein or antibody to modify stem
cells. After DNA or RNA codes or protein or antibody
targets are identified to modify stem cells (5805), DNA-LM,
RNA-LM, PLM and/or AbLM generates novel synthetic
DNA code, RNA code, protein or antibody solution candi-
dates (5810). 3D GoGNN or 3D GAE test novel synthetic
DNA code, RNA code, protein or antibody solution candi-
dates (5815). 3D GCNN, 3D MVN or 3D GAT test probable
effects of novel synthetic DNA code, RNA code, protein or
antibody candidates on multipotent or pluripotent stem cells
(5820). The novel synthetic DNA code, RNA code, proteins
or antibodies are applied to modify multipotent or pluripo-
tent stem cells (5825).

[1043] FIG. 59 is a diagram showing a 3D GNN as
descriptive of an abnormal protein and predictive of abnor-
mal protein interactions. Healthy proteins (5900) are ana-
lyzed in a PLM and a AbLM (5905). LLMs describe healthy
DNA to RNA transcription, RNA-protein translation and
protein structures (5910). LLMs predict RNA-protein trans-
lation and protein functions (5915). Bio LLMs and GNNs
are applied in simulations and in silico experiments to
analyze healthy protein interactions (5920). Bio LLMs and
GNNs are applied in simulations (via reverse engineering) to
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generate RNA code, protein structures and antibody struc-
tures (5925). The bio LLMs and GNNs test simulations of
protein interactions (5930). Abnormal proteins are analyzed
from biomarker data (5935). 3D GNNs are applied to
describe abnormal protein structure and abnormal protein
interactions (5740). 3D GNNs are applied to RNA-protein
translation prediction of abnormal protein structures and
functions (5945). 3D GNNs are applied to describe and
predict abnormal protein interactions (5950) in simulations
and in silico experiments. 3D GNNs are applied to identify
abnormal protein, antibody or RNA targets (5955) for which
novel synthetic protein, antibody or RNA can be generated.
3D GNNSs test and simulate possible interactions of solution
candidates (5960).

[1044] FIG. 60 is a diagram showing an LLM-GNN
hybrid model. A multi-layer hybrid LLM-GNN system is
shown with three input NN layers (6010, 6015 and 6020) 1,
2 and 3 receiving input data (6005) at layer 1. The GNN
layers are represented by layers 4, 5 and 6 (6025, 6030 and
6035). The NN layers (6040, 6045 and 6055) of layers 7, 8
and 9 of the system output data (6060). The GNN layers are
integrated into the LLM. While this diagram shows three
GNN layers and six NN layers of the LLM, in an embodi-
ment, there may be many thousands of layers, with some
layers focused on specialized or parallel analyses in order to
describe, predict or generate biomolecular objects.

[1045] Different classes of LLMs generate varied solu-
tions. Protein language models (PLMs) generate novel syn-
thetic proteins while antibody language models (AbLMs)
generate novel synthetic antibodies. Similarly, DNA LLMs
generate novel synthetic healthy DNA sequence code solu-
tion candidates while RNA LLMs generate novel synthetic
healthy RNA sequence code solution candidates. These four
different LLM types also generate novel synthetic antibody,
protein, DNA code and RNA code solution candidates
applied to programming stem cells. Biological LLMs gen-
erate novel synthetic small molecule solution candidates as
well.

[1046] GNNs, both 2D and 3D GNN varieties, describe
DNA, RNA, protein and antibody entity structures and
predict entity functions and interactions. In addition, GNNs
test novel synthetic DNA, RNA, protein and antibody solu-
tion candidates. For example, the 3D GoGNNs may test and
compare protein or antibody binding or blocking behavior
characteristics to test novel synthetic protein or antibody
candidates.

[1047] The 3D GNNs describe abnormal protein or anti-
body targets, and compare a healthy protein or antibody to
an abnormal protein or antibody. A PLM will generate a
novel synthetic protein and an AbLLM will generate a novel
synthetic antibody to block or bind to the protein or antibody
target. The 3D GNNs will then test candidate solutions
generated from the language models. The 3D GNNs
describe the abnormal protein, predict abnormal protein
behaviors (functions and interactions), compare the abnor-
mal protein to a healthy protein and identify a drug target.
The LLM (e.g., a PLM or an AbLM) will test possible
protein structures via in silico experiments and generate
protein solution candidates that are ranked and selected. The
LLM then generates a healthy novel synthetic protein or
antibody solution candidate and generates a prediction
hypothesis for the novel protein or antibody behavior. The
3D GNNs test novel synthetic protein or antibody solution
candidates by testing and comparing protein or antibody

Oct. 16, 2025

binding, blocking and possible interactions. The specialized
biological LLMs and 3D GDL NN’s cooperate to identify
and solve problems

[1048] While 3D GNNs are applied to describing the
structure of abnormal protein and antibody structures that
manifest as disease, predicting abnormal protein and anti-
body functions by performing in silico experiments enables
the GNNGs to identify a protein or antibody target. LLMs are
not configured to deal with abnormal protein or antibody
structures because such dysfunctional structures are unpre-
dictable and random. Abnormal protein structures embody
random structural dysfunctions that biological LL.Ms are not
trained on and that are too varied. On the other hand,
biological LLMs are well suited to working with, and
generating, healthy normal protein and antibody structures.
These LLMs are designed to predict healthy structures, from
DNA to RNA transcription and from RNA to protein trans-
lation. From these prediction analyses, these biological
LLMs can be configured to generate healthy proteins.
[1049] When the 3D GNNs identify and describe abnor-
mal protein or antibody structures, these discoveries enable
the identification of a protein or antibody target. Once the
protein or antibody target is identified, the biological LLMs
focus on building a healthy protein or antibody. Once a
healthy novel synthetic protein or antibody is generated, the
3D GNNs test the novel synthetic protein or antibody
solution candidates for probabilistic effectiveness. For
example, the 3D GNNs can compare abnormal protein or
antibody structure, function and interaction potentialities
with proposed healthy protein or antibody candidates. In
addition to protein or antibodies, the system is applied to
small molecule and stem cells as well. In the case of 3D
GNN analysis of (abnormal or healthy) protein or antibody
structures and functions or in the case of biological LLM
prediction and generation of novel synthetic candidates, the
system applies simulations to conduct experiments. The
three dimensional analysis of protein structures, for
example, can be extrapolated to four dimensional simula-
tions of functional operations and interactions. The 3D
GNNs are optimized for these complex analyses. The 3D
GNNs cooperate with the LLMs to perform these analyses.
In an embodiment, since both the GNNs and the biological
LLMs are comprised of neural networks and deep learning
algorithms, different specialized LLMs may be integrated
with different varieties of GNNs for specific analytical tasks.
The aforementioned description of the combination of 3D
GDL and biological LLMs provide a unique approach to
identifying the sources of disease, predicting the behavior of
these abnormal components, generating novel solutions to
solve the pathologies and test and predict the solution
options.

[1050] In an embodiment, some of these tasks may be
performed simultaneously by dividing the analytical com-
ponents of the operations in order to accelerate the process.
[1051] Several categories of software that are related to
IMMs, including personal health assistants (PHAs) and the
integrated health record platform, are described in FIGS.
61-81.

[1052] FIG. 61 is a diagram showing 3D GNNs connected
to a 3D database management system. Bio data (6105) are
input into a 3D database management system (6110). The
3D DBMS stores data for the 3D GNN techniques. The 3D
DBMS is accessed by various 3D GNN techniques or
algorithms, including 3D GCNN (6115), 3D GAT (6120),
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3D MVNN (6125), 3D GoGNN (6130) and 3D GAE (6135).
These 3D GNN techniques and algorithms store and access
3D data in the 3D DBMS. In an embodiment, the database
may be multidimensional. 3D databases include 3D tables to
store 3D graph data sets. In an embodiment, multi-dimen-
sional databases may be applied to 3D GNNs, 3D GDL, 3D
generative GNNs and 3D generative GDL. In another
embodiment, in-3D graph analysis may be performed in 3D
databases and in 3D GNNs, which test 3D node weights and
analyze 3D node relations.

[1053] FIG. 62 is a diagram showing APIs in the MM
system. The patient (6205) supplies medical data that are
stored in an EMR (6210), which is stored in a database (DB
1) (6215). The EMR, DB 1, DB 2 (6220), and an LLM
(6240) interface with a software agent (6250) via API’s
(API-1 (6225), API-2 (6230), API-3 (6235) and API-4
(6245)). The software agent interfaces with the MM (6255).
The MM interfaces with a PRM (6265) via API-5 (6260) and
the patient relationship management (PRM) software inter-
faces with the patient (6270).

[1054] FIG. 63 is a diagram showing the process of novel
synthetic drug design. Two drug agent candidates, including
drug agent candidate 1 (6310) and drug agent candidate 2
(6320) are directed to a protein target (6335). Drug agent
candidate 1 is a small molecule (modified peptides) (6305)
and drug agent candidate 2 is a biologic (6325). The first
drug agent candidate reveals side effects (6315) and the
second drug agent candidate reveals other side effects
(6330). Biologic macromolecules (6340) represent recom-
binant proteins (6345), antibodies (6350), siRNAs (6355)
and long peptides (6360).

[1055] FIG. 64 is a diagram showing an intelligent medi-
cal modeling system. The IMM system shows medical data
pipelines that include imaging data (6405), blood data
(6410), DNA, biomarker and protein data (6415) and bio-
medical database data (6420). The medical data are input
into the MMs at various levels and categories. Al (6430) and
analytics (6435) are input into the MMs. The MMs perform
analyses and process the data to solve medical problems.
The MMs produce recommendations (6445) for the patient
(6455), with the patient providing feedback (6450). In
addition, the MMs seek out patient medical data from the
medical data pipelines in order to collect data to solve
medical problems.

[1056] FIG. 65 is a diagram showing MM data interaction.
Medical data sources (6505) supply data to a medical LLM
(6510) and the MM (6515). The MM performs computer
analytics (6520) and in silico experimentation (6525). From
the computer analytics, the system produces a medical
report (6525). From the in silico experimentation, the system
produces medical data output (6530).

[1057] FIG. 66 is a diagram showing PHAs generating
medical summaries from medical articles, databases or
LLMs. PHAs (6625) facilitate the generation of medical
summaries (6630) from medical articles (6605), medical
databases (6610) and medical or biological LLMs (6615).
Medical or biological LLLMs generate medical data by
accessing NLP (6620). A PHA (6635) then facilitates the
generation of medical summaries.

[1058] FIG. 67 is a diagram showing PHAs accessing
patient medical test data and EMR, EHR and IHR data to
build an IMM. A PHA (6725) facilitates the input of patient
medical test data (6705) into an IMM (6745). Another PHA
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(6730) facilitates the input of EMR (6710) data into the
IMM. An additional PHA (6735) facilitates the input of EHR
(6715) data into the IMM.

[1059] Finally, another PHA (6740) facilitates the input of
THR (6720) data into the IMM.

[1060] FIG. 68 is a diagram showing specialized PHAs in
a multi-agent system applying skills to perform functions
and communicate with each other. Medical pathology data
are requested (6805) and three PHAs perform functions to
process the data. PHA 1 (6825) facilitates the gathering of
medical data (6810), PHA 2 (6830) facilitates the summa-
rization medical data (6815) and PHA 3 (6835) facilitates
the provision of medical recommendations (6820). The three
PHAs interact with each other.

[1061] FIG. 69 is a diagram showing a PHA combining
two or more Al techniques or algorithms into a hybrid Al
technique or algorithm and applied to an MM. Al techniques
or algorithms (1 (6905), 2 (6910), 3 (6915) and 4 (6920)) are
input into, or accessed by, the PHA (6925). The PHA
combines the two or more Al techniques or algorithms into
a hybrid Al technique or algorithm (6930). The hybrid Al
technique or algorithm is then input into or accessed by the
MM (6935). In an embodiment, PHAs can also actively
synthesize Al techniques (into hybrid Al algorithms) to
solve an MM problem.

[1062] FIG. 70 is a diagram showing PHAs supplying
different Al techniques or algorithms to different types of
MMs. An Al library (7005) is shown supplying PHAs (7010)
with Al #1 (7015) for a diagnostic MM (7030), Al #2 (7020)
for a prognostic MM (7035) and Al #3 (7025) for a thera-
peutic MM (7040).

[1063] FIG. 71 is a diagram showing PHAs acting as
interfaces with doctors, a patient MM and patient tasks.
Doctor(s) (7105) interface with a patient (7115) via a PHA
(7110). The patient interfaces with an MM (7125) via a PHA
(7120). The patient uses a PHA (7130) to complete forms
(7145), identify diagnostic test status (7140) and educate the
patient on medical conditions and prognosis (7135).
[1064] FIG. 72 is a diagram showing PHAs collecting and
analyzing health data to develop diagnostic, prognostic or
therapeutic solutions. A medical database and libraries
(7205), patient medical diagnostic test data (7210) and
patient EMRs, EHRs and IHRs (7215) are collected and
analyzed by PHAs (7220). The PHAs identify diagnostic
solutions (7225), prognostic solutions (7230) and therapeu-
tic solutions (7235).

[1065] FIG. 73 is a diagram showing PHAs generating
MMs, analyzing incomplete data and solving MM problems
over time. Medical data (7305) and Al techniques or algo-
rithms (7310) are forwarded to a PHA (7315), which sup-
plies the data and Al techniques to MM #1 (7320), MM #2
(7330) and MM simulation #3 (7335). APHA (7325) inter-
prets incomplete data in the three MMs.

[1066] FIG. 74 is a diagram showing PHAs conducting in
silico experiments to compare dysfunctional proteins to
reference genes, RNA and proteins. A PHA (7410) conducts
in silico experiments in an MM (7405). The experiments
analyze reference gene, RNA and protein data (7415),
analyze a dysfunctional protein by comparing it to a refer-
ence gene, RNA and protein (7420) and assesses dysfunc-
tional protein attributes and functional consequences in
protein and cellular pathways (7425).

[1067] FIG. 75 is a diagram showing PHAs enabling an
MM to supply diagnostic, prognostic and therapeutic solu-
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tions. Patient medical data (7505) is forwarded to an MM
(7510) by PHAs (7510). The MM identifies a patient pathol-
ogy (7520), forecasts a disease evolution (7525), identifies
therapy options (7530) and predicts therapy options (7515).
[1068] In an embodiment, PHAs receive medical data
from an MM analysis, triggers a physician intervention and
automatically communicates with a physician.

[1069] FIG. 76 is a block diagram showing PHA system
dynamics. Two MMs (MM 1 (7610) and MM 2 (7619)
interact with various inputs and operations by working with
various types of PHAs. MM 1 receives data from a Bio LLM
(7602) via PHA-b (7606) and stores data in a Medical
Database (7604) via PHA-s (7608). MM 1 places data in a
table (7630) via PHA-m (7628) and M/I conducts MM
analysis (7614) with PHA-a (7612). Two Al algorithms,
Al-1(7634) and AI-2 (7638) interface with M/I via PHA-c’s
(7632 and 7636). Patient biomarker data (7618) are for-
warded to M/I via PHA-b (7616). The two MM’s (MM 1 and
MM 2) interface via PHA-mes (7640). Patient biomarker
data are also forwarded to MM 2 via a PHA-b (7618). MM
2 is connected to MM synthesis (7622) via PHA-a (7620),
prediction (7626) via PHA-p (7624), simulation (7650) via
PHA-sims (7648) and security (7644) via PHA-sec (7646).
PHA-m refers to model builders, PHA-a refers to analyzers,
PHA-s refers to searchers, PHA-c refers to combiners,
PHA-i refers to interrogators, PHA-mes refers to messen-
gers, PHA-b refers to brokers, PHA-sec refers to security,
PHA-p refers to predictors and PHA-sims refers to simula-
tors.

[1070] FIG. 77 is a list of THRP levels. General medical
data from biological or medical databases (7705) includes
medical research article data (7710), pre-clinical data
(7715), clinical trials data (7720) and genomic, proteomic
and multiomic data (7725). Specific patient medical data
(7730) includes private health data (between doctor and
patient) (7735), multiple doctors sharing patient data (with
patient permissions) (7740), patient health data (with dif-
ferent levels of patient permissions) (7745), privileged
patient health data (private patient health data (7750), gen-
eralized patient health data (generalized data from patient
health records) (7755), anonymized patient health data (ag-
gregated data from patient health records) (7760) and insur-
ance private patient health data (with different levels of
patient permissions) (7765).

[1071] FIG. 78 is a diagram showing a natural language
processing program analyzing health data that are input to
the THRP and MMs. General medical data (7805) and
specific patient data (7810) are input into an IHRP (7820).
The IHRP applies NLP to analyze medical data (7815) and
patient health data (7825). The medical data and patient data
are input into MMs (7830).

[1072] FIG. 79 is a diagram showing an IHRP interacting
with MMs and generating patient health records. General
medical data (7905) and specific patient health data (7910)
are input into an IHRP (7915). The medical and patient
health data are input into an MM (7925), which produces a
patient diagnosis (7930). The IHRP also generates three
health records, namely, health record #1 (7935), health
record #2 (7940) and health record #3 (7945).

[1073] In an embodiment, the IHRP receives, interprets,
analyzes and integrates medical codes. A patient chart can be
automatically converted to an IHR either directly or through
an EMR or EHR translation. Medical codes are input into
the THR.
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[1074] FIG. 80 is a diagram showing the PDSM system
layers. The PDSM system includes confidential patient
medical data (8010), assigned a red color; specific confi-
dential patient medical data (8020), assigned an orange
color; general patient information (8030), assigned a green
color; high priority patient data (acute care) (8040), assigned
a blue color; and anonymized patient data (e.g., for clinical
trials) (8050), assigned a purple color.

[1075] FIG. 81 is a diagram showing the PDSM filtering
patient security for MMs. General health data (8105) and
patient health data (8110) are input into an IHRP (8115),
which produces patient health report #1 (8120) and patient
health report #2 (8125). The IHRP supplies data to the
patient data security management (PDSM) system (8130),
which forwards the data to the MMs (8135), which produce
a patient diagnostic model with security (8140) and patient
(diagnostic) prognostic model with security (8145).

[1076] FIGS. 82 to 98 describe IMMs applied to medical
diagnostics.
[1077] FIG. 82 is a diagram showing patient abnormal

proteins analyzed and compared to healthy proteins to assess
a patient disease in an IMM. Data from a protein database
(8220), a protein folding prediction (8205), a protein LLM
(8210) and a miRbase biomarker database (8222) are input
into a model (8215) describing healthy proteins as a refer-
ence. The data on patient gene, RNA and protein biomarkers
(8230) and Al and DL algorithms are applied to an analysis
of abnormal proteins (8235). An MM (8225) compares
abnormal protein data to reference protein data. An IMM
assesses the patient disease attributes (8240) and the patient
disease is diagnosed in a patient model (8245).

[1078] FIG. 83 is a diagram showing a MiR database of
biomarker types that indicate the presence of a disease. Data
for protein coding genes (8305), non-coding genes (8310),
protein coding RNA (8315), non-coding RNA (9320), pro-
teins (8325) and peptides (8330) are input into the miRbase
database of molecular biomarkers (8335).

[1079] FIG. 84 is a flow chart showing how multiple
biomarkers are analyzed to assess the sources of diseases.
After machine learning algorithms are applied to analyze a
set of biomarkers (8405), the biomarkers are weighted in
importance to a specific disease (8410). The biomarker
candidates are sorted according to active and passive status
(8415) and active biomarkers are ranked (8520). The ML
algorithm applies a cluster analysis or regression analysis to
sort and rank the biomarkers (8525) and the biomarkers are
identified as the sources of diseases among many biomarker
candidates (8530).

[1080] FIG. 85 is a diagram showing protein abnormalities
ranked on a scale based on geometrical configuration dis-
tortion degree. A spectrum of protein abnormalities (8505)
from 1, the least distorted, to 7, the most distorted, is shown.
[1081] FIG. 86 is a flow chart showing MMs performing
biomarker analyses. After patient biomarker data are fed into
the MM system (8605), the MM system applies ML tools to
analyze the biomarker data (8610). The MM evaluates the
biomarker data (8615) and compares the abnormal patient
biomarker data to libraries and databases of healthy DNA,
RNA, proteins and metabolites (8620). The MM then builds
3D models of molecular and cellular structures and attri-
butes (8625).

[1082] FIG. 87 is a diagram showing an MM analyzing
many biomarkers to identify several critical biomarkers as a
source of disease and as drug targets. From hundreds of
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biomarkers (8705), five critical biomarkers (8710) are iden-
tified as key biomarkers that indicate the source of a par-
ticular form of disease in an MM (8720). The specific critical
biomarkers are analyzed and identified as drug targets
(8715).

[1083] FIG. 88 is a flow chart showing the reverse engi-
neering process for identifying novel biomarkers. Once
blood, fluid or tumor samples are obtained from a patient
(8805), an RNA-seq testing process is initiated (8810). Raw
RNA data, including mRNA, IncRNA or miRNA, are plot-
ted on a graph (8815) and the RNA data are compared to
reference data of healthy RNA examples (8820). The sample
RNAs reveal the expression levels of the patient disease
relative to the RNA database reference data (8825). The
comparisons between sample RNA and reference RNA
reveal substantial differences which are represented on a
graph (8830). The MM weights the sample RNA examples
to give priority to those with the strongest readings (8835)
and the MM applies ML techniques or algorithms to cat-
egorize the RNA samples according to functional utility
(8840). The RNAs are analyzed for their protein pathway
utility (8845). The most likely RNA biomarker candidates to
signify a correlation with a specific disease are selected and
ranked (8850) and the RNA candidates are validated based
on the highest likelihood of prediction of success in identi-
fying a particular disease (8855).

[1084] FIG. 89 is a flow chart showing the process of
pathology analysis from a gene mutation to tracking abnor-
mal protein pathways. From a specific pathology (8905), a
gene mutation is identified as the source of the pathology
(8910). The transcription of the mutated gene into an abnor-
mal RNA is described (8915) and the translation from the
abnormal RNA to an abnormal protein (8920) is shown.
Novel biomarkers of the abnormal protein are identified
(8925) and protein pathways of the abnormal protein in
cellular networks are mapped (8930).

[1085] FIG. 90 is a diagram of different biomarkers asso-
ciated with different phases of disease progress. Disease
progression is shown over five phases. Different biomarkers
(A-E) (9005-9025) are shown corresponding to the different
phases of the disease progression.

[1086] FIG. 91 is a diagram of Al and ML algorithms
applied in an IMM to patient pathology biomarker data to
evaluate protein and cellular dynamics. Patient pathology
biomarker data (9105), including data on genes (9110), RNA
(9115) and proteins (9120) are analyzed by AI and ML
algorithms (9125) and input into an IMM (9130). The IMM
analyzes molecular pathway analysis (9135), cellular path-
way analysis (9140), proteomic interactions (9145) and
multiomics mechanics (9150). The IMM develops a person-
alized medicine evaluation of the patient’s disease (9155).

[1087] FIG. 92 is a flow chart showing an MM generating
in silico experiments to test and analyze patient biomarkers
to identify the source of disease. Once an MM generates an
in silico experiment to identify a patient pathology target
(9205), the MM applies analytical techniques to identify a
mutated gene or abnormal RNA or protein as a source of a
patient disease (9210). The MM applies ML, including deep
learning and neural network, algorithms to analyze the
unique expression characteristics of a mutated gene or
abnormal protein (9215). The MM analyzes the operational
dynamics of the patient pathology (9220) and generates and
tests hypotheses about operational dynamics of abnormal
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DNA, RNA, protein and cell behaviors (9225). The MM
then identifies a molecular target as the source of a patient
disease (9230).

[1088] FIG. 93 is a diagram showing an IMM performing
in silico experiments to assess patient abnormal proteins and
propose a diagnosis. A protein LLM (9305), a protein
database (9310) and data on patient protein biomarkers and
abnormal proteins (9315) are input into an IMM ((320). The
IMM conducts in silico experiments (9315) by applying Al
(9330), ML (9335) and GDL (9340) techniques and algo-
rithms. The IMM performs an analysis of patient abnormal
proteins with comparison to healthy proteins (9345) and the
model proposes a diagnosis (9350).

[1089] FIG. 94 is a diagram showing an IMM analyzing
biomarkers to identify genetic variant combinations that
reveal disease targets. A biomarker analysis identifies 85
genetic mutations (9405) in a patient, the data for which are
imported into an IMM (9410). The IMM applies combina-
torial logic (9415), combinatorial algebra (9420) and partial
differential calculus (9425) and the model identifies genetic
variant combinations causing a patient pathology (9430) by
analyzing the genetic mutations. The model then identifies
disease targets (9435).

[1090] FIG. 95 is a diagram showing an IMM performing
in silico experiments of protein and drug interaction pro-
cesses and building simulations. The IMM (9505) performs
in silico experiments (9510) to perform analysis of protein-
protein interaction(s) (9515), drug-target interaction(s)
(9520), drug-disease interaction(s) (9525) and drug-drug
interaction(s) (9530). The IMM then builds simulations of
interaction processes (9535).

[1091] FIG. 96 is a diagram showing an IMM performing
in silico simulations of DNA, RNA, protein and cellular
processes. The IMM (9605) applies in silico experiments
(9610) to build simulations (9615) involving analyses of
intracellular processes (9620), protein pathway dysregula-
tion processes (9625), DNA to RNA anomaly transcription
processes (9630) and abnormal RNA to protein translation
processes (9635).

[1092] FIG. 97 is a diagram showing a healthy reference
model compared to a patient pathology model in order to
assess the evolution of a disease. IMM #1 (9705) generates
and analyzes a reference model of healthy biological pro-
cesses (9715), drawing on a reference multiomics database
(9710) and a patient’s past healthy history (9720). IMM #2
(9725) generates and analyzes a model of a patient pathol-
ogy (9735), which draws on patient biomarker and multi-
omics data (9730) and ML algorithms applied to in silico
experiments to analyze patient biological data (9740). The
two models in the IMM are compared (9745), which enables
the patient and doctor to track the evolution of a disease
(9750).

[1093] FIG. 98 is a diagram showing protein and cellular
interaction processes simulated in IMMs. IMM simulations
(9840) are applied to model healthy protein to dysfunctional
protein interactions (9805), protein to molecule docking
processes (9810), protein-ligand interactions (9815), pro-
tein-lipid interactions (9820), non-coding DNA and RNA
into peptides (9825), inter-cellular signal transduction net-
working (9830) and intracellular networks (9835).

[1094] FIGS. 99 to 110 describe IMMs for diagnostic
prognostics.
[1095] FIG. 99 is a diagram showing diagnostic prognosis

identifying and tracking DNA, RNA and protein degradation
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and evolution (9905). DNA (9910) is shown degrading
genes (925) and mutated DNA (9940). RNA (9915) is shown
degrading RNA (9930) and abnormal RNA (9945). Proteins
(9920) are shown degrading proteins (9935) and dysfunc-
tional proteins (9950) and cellular degradation (9955).
[1096] FIG. 100 is a diagram showing an MM comparing
patient disease analysis and aggregate patients’ diseases and
their evolution to develop a prognosis of patient disease.
Patient biomarker data (10005), bio LLM data (10010) and
ML algorithms (10015) are input into an MM (10020). The
MM diagnoses a disease (10025) and identifies the phase of
the disease (10030). An MM (10040) analyzes medical
database (10035) data and performs analyses of aggregate
patients’ diseases and their evolution (10045). The MM
performs comparative analysis between the patient disease
and analysis of aggregate patients’ diseases and their evo-
lution (10050) and develops prognosis of patient disease
(10055).

[1097] FIG. 101 is a diagram showing different patient
disease progress scenarios mapped and rated. Three sce-
narios of disease progress are shown. In scenario 1 (10105),
a patient’s disease shows improvement over four phases
(10110, 10115, 10120 and 10125). At phases 2 and 3, the
patient shows an improvement in condition. At phase 4 of
scenario 1, the patient shows a 95 score. In scenario 2
(10160), there is no change in condition across the four
phases (10110, 10130, 10135 and 10140). At phase 4 of
scenario 2, the patient shows an 85 score. In scenario 3
(10165), there is a decline in the patient’s condition over the
four phases (10110, 10145, 10150 and 10155). At phase 4 of
scenario 3, the patient shows a 75 score.

[1098] FIG. 102 is a diagram showing MMs receiving and
analyzing quality and quantity biomarker data in order to
predict a pathology evolution. Over four phases, the bio-
marker quality and quantity change, with increasing quantity
of biomarkers shown from 10205 to 10210 to 10215 to
10220. The MM (10225) analyzes these biomarker changes
and a model analysis predicts pathology evolution (10230)
from the biomarker data.

[1099] FIG. 103 is a diagram showing biomarker data
analyzed in MMs to predict disease prognosis and assign a
prognosis score. Biomarker quality evolution data are shown
in 10305, 10310, 10315 and 10320 over four phases, with an
increase in the first three phases and a decrease in the fourth
phase. ML is applied to analyze biomarker data in MMs,
with M/I (10325) analyzing the biomarker data in phase 1,
MM 2 (10330) analyzing the biomarker data in phase 2, MM
3 (10335) analyzing the biomarker data in phase 3 and MM
4 (10340) analyzing the biomarker data in phase 4. A
prognosis score of 90 (10245) is allocated by MM 1 in phase
1, a prognosis score of 85 (10350) is allocated by MM 2 in
phase 2, a prognosis score of 80 (10355) is allocated by MM
3 in phase 3 and a prognosis score of 85 (10360) is allocated
by MM 4 in phase 4.

[1100] FIG. 104 is a diagram showing biomarker data
analyzed in MMs in snapshots over four phases with dif-
ferent probable scenario outcomes over time. Biomarker
data are input into MMs over four phases, with biomarker
data (10405) in phase 1 input into MM 1 (10425), biomarker
data (10410) in phase 2 input into MM 2 (10430), biomarker
data (10415) input into MM 3 (10435) and biomarker data
(10420) input into MM 4 (10440) in phase 4. These phases
represent snapshots of data collection that are built and
analyzed in the models. The models generate probable
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scenario changes of the disease progression over time on a
prognosis scoring range. The models present three main
scenarios. In the first scenario, which has a 50% chance of
occurring, the MMs map out a positive scenario from 10442
to 10445 to 10448 to 10452, with an average prognostic
score of 90. In the second scenario, which has a 25% chance
of occurring, the MMs map out a moderate scenario from
10442 to 10455 to 10458 to 10462, with an average prog-
nostic score of 80. In the third scenario, which has a 25%
chance of occurring, the MMs map out a pessimistic sce-
nario from 10441 to 10465 to 10470 to 10475, with an
average prognostic score of 75.

[1101] FIG. 105 is a diagram showing an MM analyzing
biomarker data to assess the evolution of patient disease
outcomes. Biomedical library data (10515), patient 1 bio-
marker data (10505) and patient 2 biomarker data with
disease outcome data (10510) are input into an MM (10520).
The MM compares patient 1 and patient 2 biomarker data to
assess probable disease outcomes (10525) and the MM
applies a micro-prognostic analysis to assess the evolution
of biomarkers and patient disease outcomes (10530).

[1102] FIG. 106 is a flow chart showing biomarker analy-
sis in MMs to identify a pathology evolution and drug
targets. After MMs identify specific predictive biomarkers
(10605), predictive biomarkers enable MMs to forecast a
phase of disease evolution (10610). The biomarkers are
classified, sorted and ranked to assess the relative weight and
value of particular biomarkers in making pathology predic-
tions (10615). A super-regulator biomarker is identified to
indicate a disease progress (10620) and a super-regulator
biomarker is shown to be critical to blocking the evolution
of a disease (10625). The MMs generate a drug to target this
biomarker as the key to stopping the disease (10630).

[1103] FIG. 107 is a diagram showing MMs applying in
silico experiments to analyze biomarker data, develop 3D
and 4D simulations and map probable pathology scenarios.
Patient biomarker data (10705) are input into an MM
(10710). The MM analyzes biomarker conditions and
expressions over time (10715) and conducts in silico experi-
ments (10725). PHAs (10720) may assist in processing the
in silico experiments. The in silico experiments in the MM
include analyses of protein-protein interactions (10735),
protein-ligand interactions (10740) and protein-lipid inter-
actions (10745). The MMs project 3D protein structure and
function predictions (10750) and model 3D and 4D simu-
lations of protein dysfunction (10730). The in silico experi-
ments enable MMs to analyze biomarkers and map probable
pathology scenarios (10760).

[1104] FIG. 108 is a diagram showing a micro-prognostics
analysis applied by in silico experiments in MMs to compare
healthy and dysfunctional proteins and predict disease prog-
ress. A protein structure decay over time is shown from P1
to P5 (10805, 10810, 10815, 10820 and 10825). The MM
applies in silico experiments to analyze protein interactions
in cellular pathways (10830). The MM then identifies and
maps protein structure degradation and protein function
decay (10835). The MM compares dysfunctional protein
pathways in cells with healthy protein mechanisms (10850)
by inputting data from a protein LLM (10840) and a protein
database (10845). The MM develops simulations of patient
disease progress scenarios under different conditions
(10855) and the MM develops patient disease prediction
scenarios with probabilities (10860).
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[1105] FIG. 109 is a diagram showing an MM applying in
silico experiments to identify a drug target and drug-target
fit and making drug-disease predictions. Protein decay is
shown over time from P1 to P5 (10905, 10910, 10915,
10920 and 10925). An in silico experiment is conducted in
an MM (10930) to analyze the protein decay process. A P1
protein is identified as a drug target (10935) and the MM
identifies or generates a drug to fit the drug target (10940) by
either blocking or binding to the protein target. The MM
simulates drug reaction scenarios (10945). The MM also
identifies disease caused by the P1-P5 protein degradation
process (10950) and the MM makes predictions of drug-
disease correlation options (10955).

[1106] FIG. 110 is a diagram showing a process to identify
patient pathology on a molecular level. Genetic mutations
(11005) are transformed into RNA aberrations (11010) and
into dysfunctional proteins (11015). The dysfunctional pro-
teins are shown to generate a pathology (11020). Biomarkers
identify the dysfunctional proteins (11025), which are
applied to diagnose the patient pathology (11040) and serve
as the source of the dysfunctional protein analysis that
shows the pathology generation. The pathology identifica-
tion of dysfunctional proteins detect proteins as drug targets
(11030) and the system identifies a medicinal solution
(11035). These functions may be performed in an MM.

[1107] IMMs are applied to therapeutics in FIGS. 111
through 124.
[1108] FIG. 111 is a diagram showing MMs applying ML

and Al to analyze biomarker data to diagnose a patient
disease and to develop therapeutic drug options. Biomarkers
(11105) are input into an MM and analyzed (11110). Al and
ML are input into an MM (11115) and the MM analyzes
genetic mutations, RNA aberrations and dysfunctional pro-
teins (11120). The MM applies Al and ML to develop a
patient disease diagnosis (11125) and identify therapeutic
drug options (11130). The patient therapy is then applied
(11135).

[1109] FIG. 112 is a flow chart showing MMs identifying
and testing drug solutions for a drug target. Biomarkers
(11205) are analyzed in an MM to identify an abnormal
protein (11215). The MM searches drug libraries (11220)
and protein databases (12225). The MM identifies drug
candidate solutions (11230) and the MM applies ML to
analyze drug candidate options (11235). The MM weights,
ranks and selects drug candidates (11240). The MM tests
drug candidates against protein targets (11245) and the MM
predicts drug candidate effects (11250).

[1110] FIG. 113 is a diagram showing abnormal protein
and antibody targets and application of mRNA solutions. An
abnormal RNA (11310) is translated into an abnormal pro-
tein (11315), which represents a drug target. The abnormal
protein is configured to identify a healthy mRNA code
(11305) which is applied to block the abnormal RNA. A
healthy mRNA code is applied to generate a healthy protein
(11320), which is configured as a drug. An abnormal RNA
(11330) is translated into an abnormal antibody (11335),
which represents a drug target. The abnormal RNA is
configured to identify a healthy mRNA code (11325) which
is applied to block the abnormal antibody. A healthy anti-
body (11340) is applied to generate a healthy antibody,
which antibody is applied to re-equilibrate the immune
system (11345).

[1111] FIG. 114 is a flow chart showing an MM applying
CADD to construct and test different hypothesis to solve a
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drug target. A MM utilizes computer-aided drug design
(CADD) via an in silico laboratory (11405). MM models
drug experiments (11410) and analyzes application of dif-
ferent drug candidates in different instantiations of dysfunc-
tional proteins (11415). The MM constructs and tests
hypotheses of drug effects on patient pathology (11420).
One hypothesis may apply a drug to block a dysfunctional
drug target (11425), one hypothesis may apply a drug to
correct, enhance or improve a drug target (11430) and one
hypothesis may apply a drug to bypass the drug target
(11435).

[1112] FIG. 115 is a flow chart showing MMs identifying,
evaluating and updating drug therapy options to solve
patient pathology. After abnormal proteins are identified
(11505), an MM analyzes abnormal protein protein-pathway
protein interactions (11510). The MM identifies a drug target
(11515), searches for drug therapy options (11520) and
applies the drug to a pathology (11525). The MM evaluates
the drug application (11530) and updates the drug therapy
(11535). The patient pathology is then managed (11540).
[1113] FIG. 116 is a flow chart showing MMs applied to
describe the precise molecular geometry of a dysfunctional
protein and to custom design a novel synthetic drug therapy.
Once the MM’s identify and map out the mechanisms of
intracellular pathways of dysfunctional proteins (11605), the
MM dysfunctional protein pathway maps verify the protein
target (11610). The MM describes the precise geometry of
dysfunctional proteins by applying GDL algorithms (11615)
and the MM seeks to custom design a drug for the patients
specific protein targets (11620). The MM generates a novel
synthetic protein (11625) and the novel synthetic protein
precisely targets a specific dysfunctional protein (11630).
The new drug is applied to the patient pathology (11635).
[1114] FIG. 117 is a diagram showing GenAl and GDL
algorithms applied to a protein language model to develop a
novel protein or small molecule to solve a dysfunctional
drug target. A mutated gene (11705) develops into a dys-
functional protein target (11710). By applying GenAl and
GDL algorithms (11720), a protein LM develops a novel
protein (11715) and generates a novel synthetic small mol-
ecule (11725). The PLM originated novel protein is applied
to solve a dysfunctional protein target (11730). The PLM
generated novel synthetic small molecule is applied to solve
a dysfunctional protein target (11735).

[1115] FIG. 118 is a flow chart showing a GDL applied to
describe dysfunctional protein and GenAl applied to custom
design a drug solution. A dysfunctional protein (11805) is
configured as a drug target and GDL is applied to analyze the
protein target to describe its geometry (11810). The GenAl
is applied to reverse engineer a custom design of a drug
solution from the protein drug geometry (11815) and a
custom drug is generated (11820). The custom drug is
applied to treat the dysfunctional protein (11825).

[1116] FIG. 119 is a flow chart showing MMs designing
and testing novel drugs to match a dysfunctional protein
target by applying Al and ML techniques. After a disease
target, such as a dysfunctional protein, is identified and
described in MMs (11910), the MMs configure a novel drug
candidate design to address the disease target (11915). Al
and ML techniques and algorithms are applied to the MMs
to generate analyses (11905). The MMs predict the binding
of the new drug candidate with the disease target (11920)
and predict drug effects in solving the patient’s disease
(11925). In silico drug testing in MMs confirm the efficacy



US 2025/0322963 Al

of the drug’s effects on the disease (11930) and the novel
drug candidates are tested in clinical trials (11935).

[1117] FIG. 120 is a diagram showing 3D GDL applied to
describe dysfunctional protein and 2D GenGDL and 3D
GenGDL applied to design novel drug therapies. A GDL
algorithm describes the geometry (12020) of a dysfunctional
protein target (12005) and 3D GDL describes the precise
geometry of the dysfunctional protein target (12025). The
3D GDL algorithm applies 3D graph modeling techniques or
algorithms (12030), with 2D and 3D GenGDL and GenAl
algorithms applied to design novel drug therapies (12035).
The Gen GDL and Gen Al draw on LLMs and PLMs
(12015) that are fed data from specialized biology and/or
chemistry databases (12010). The 2D and 3D GenGDL and
GenAl algorithms are applied to design novel proteins
(12040, novel RNA (12045), novel ligands (12050), novel
antibodies (12055) and novel small molecules (12060). The
novel drug therapies are applied to solve patient pathologies
(12065).

[1118] FIG. 121 is a diagram showing antibody specific
protein LLMs, GenAl and GenGDL applied to MMs to
construct a novel antibody. The iReceptor antibody database
(12105) and the observed antibody space (OAS) database
(12110) are accessed by the antibody-specific protein LLM
(AbLM) (12115). The AbLM generates data on general
antibodies (12120), antibody-antigen pairs, (12125), paired-
chain antibody sequences (12130) and natural antibodies
(12135). By applying GenAl (12140) and 2D and 3D
GenGDL algorithms (12145), MMs construct at least one
novel antibody (12150). The novel antibody is applied to
solve a protein or antigen disease target problem (12155).

[1119] FIG. 122 is a flow chart showing GenAl, 2D
GenGDL or 3D GenGDL applied to MMs to design novel
siRNA code, novel ligands and novel enzymes. After ana-
lyzing a protein target (12205), an MM reverse engineers a
siRNA code to apply to or block (inhibit) the protein target
(12215). The MM applies GenAl and 2D or 3D GenGDL
algorithms (12210). Additionally, the MM designs novel
ligands to block a protein component in a protein target
(12220). Moreover, the MM also designs a novel enzyme to
catalyze or block a natural enzymatic process in an intrac-
ellular protein pathway (12225).

[1120] FIG. 123 is a diagram showing an MM designing
a novel synthetic drug to optimize structural properties to fit
a drug target. In one mode, a traditional drug discovery
model tests many random molecules with different structural
attributes (12310) by analyzing a drug target (12305). In
another mode, after analyzing the (protein) drug target, an
MM designs a novel synthetic drug to precisely match a
specific protein target (12315). The MM engineers a novel
drug from the drug target by analyzing amino acid sequences
and peptide configurations to develop a chemical structure
(12320) and the MM describes and predicts the binding of
a protein target and an optimized novel synthetic drug design
(12325). Additionally, an MM designs a novel synthetic
drug to precisely match a specific protein target (12315). The
novel drug structural properties are optimized to fit the drug
target (12330) and the drug-target interactive attributes are
optimized (12335).

[1121] FIG. 124 is a diagram showing MMs designing
several classes of novel customized synthetic biologics. By
applying GenAl and 2D or 3D GenGDL algorithms (12405),
MM s design novel customized synthetic biologics (12410).
The synthetic biologics include recombinant DNA (12415),
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recombinant therapeutic proteins (12420), monoclonal anti-
bodies (12425), vaccines (12430), TNF inhibitors (12435),
JAK inhibitors (12440), IL inhibitors (124450), SIP modu-
lators (12450) and anti-adhesion molecules (12455). These
custom designed biologics are then applied to genetic dis-
eases, cancer and autoimmune disorders (12460).

[1122] FIGS. 125 to 139 show IMMs applied to therapeu-
tic prognostics.

[1123] FIG. 125 is a diagram showing Al-endowed PHAs
collecting biological data for MM analysis of diagnostics,
prognostics and therapeutics. A biological database (12505)
and a chemical database (12510), a PLM (12535), an AbLM
(12540) and biomarkers (12515) supply data to an MM
(12560) via PHAs (12550 and 12555). The MM conducts
experiments (12545) to identify solutions to problems. The
MM then supplies analyses for diagnostics (12520), diag-
nostic prognostics (12525), therapeutics (12530) and thera-
peutic prognostics (12533).

[1124] FIG. 126 is a diagram showing therapeutic prog-
nostics describing drug options on disease progress and
predicting a drug’s effect on a disease. A drug candidate
(12610) is matched to a protein target (12605). Descriptive
therapeutic prognostics (12615) is applied to track a disease
progress in light of different drug options (12620) and map
possible drug inputs to treat a disease over time (12625).
Prescriptive therapeutic prognostics (12630) is applied to
predict a drug’s effect on a disease progress (12635) and
identify a close match of a genetic mutation to a tailored
drug in order to assess the drug’s fit to the molecular
configuration of a disease (12640).

[1125] FIG. 127 is a diagram showing different drugs
providing effects on disease evolution and assigning drug
reaction probability scores. A disease is shown evolving
over five stages (12705, 12710, 12715, 12720 and 12725).
At stage two (12710), a drug A (12730) is shown to be
ineffective and it is given a low drug reaction probability
score (12735). At stage four (12720), a drug B is show to be
moderately effective (12740) and it is given a moderate drug
reaction probability score (12745).

[1126] FIG. 128 is a flow chart showing an MM analyzing
and comparing a patient’s disease progress with and without
drug therapy. An MM analyzes a patient’s genetic profile
(12805). After the patient’s disease is diagnosed (12810),
particular drug(s) are applied to the disease (12815). The
MM estimates the prospective reaction of the drugs of the
patient’s disease (12820). The MM analyzes the progress of
the patient’s disease without intervention (12825) and the
MM compares the patient’s disease progress with and with-
out drug therapy (12830). The MM analyzes progress of
patient’s disease with application of drug(s) (12835) and the
MM analyzes the patient’s multiomic profile to match the
targeted drug therapy to the particular disease characteriza-
tion (12840). The MM again compares the patient’s disease
progress with and without drug therapy (12830).

[1127] FIG. 129 is a diagram showing an MM analyzing
and comparing effectiveness of two drugs on a patient
disease progress. A patient disease progress is shown over a
time series of five phases (1-5) (12905, 12910, 12915, 12920
and 12925). Drug A is applied to treat the patient disease at
phase 1 (12930). The MM analyzes the lack of effect on the
patient disease (12935) after the first phase. Drug B is
applied to treat the patient disease at phase 3 (12940). The
MM analyzes a substantial positive effect on the patient
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disease progress (12945) at phase 4. The MM compares the
effectiveness of the two drugs (12950).

[1128] FIG. 130 is a diagram showing biomarker mea-
surements applied to compare disease progress with and
without intervention. A diagnostic prognosis of a disease
evolution (13005) without therapeutic intervention is shown
compared to a therapeutic prognosis of a disease evolution
(13085) with therapeutic intervention. In the case of the
diagnostic prognosis, a disease evolution is shown over five
phases (13010, 13015, 13020, 13025 and 13030). Biomark-
ers (13070) are measured at phases 2-5 along the course of
the disease progression in order to map the evolution of the
disease without therapeutic intervention (13035). In the case
of the therapeutic prognosis, a disease evolution is shown
over the five phases (13040, 13045, 13450, 13455 and
13460) in which biomarkers are measured (13075) in order
to detect therapy effectiveness at each stage. A therapy is
applied at phase 2 (13080) and the positive feedback of the
therapy (13065) is demonstrated by assessing the biomark-
ers.

[1129] FIG. 131 is a diagram showing drug therapy inter-
vention applied, assessed (via biomarkers) and modified to
show pathology improvement over five phases (13105,
13110, 13115, 13120 and 13125). A disease is identified at
phase 1 (13105). In phase 2, a therapy intervention #1
(13175) is applied. Biomarkers are applied at phases 2-5
(13130) to assess the effectiveness of the therapy interven-
tion. Biomarker assessment at phases 2 and 3 show an
improvement of the pathology condition (13140) and the
stability of the therapy between phases 3 and 4. A therapy
intervention #2 (13145) is applied at phase 4 and an
improvement of the pathology condition after phase 4.
[1130] FIG. 132 is a diagram showing an MM analyzing
patient biomarkers to assess pathology progress and recom-
mending a modified therapy that shows major improvement.
A therapy intervention #1 (13230) is applied at phase 1
(13205) and the pathology shows improvement (13200). An
MM assesses biomarkers at phase 2 (13210), phase 3
(13215) and phase 4 (13220). After phase 3, the pathology
shows a decline in condition (13240). As a consequence of
the deteriorating condition based on biomarker feedback, an
MM analysis recommends a modified therapy (13255),
therapy intervention #2 (13245). At phase 5, the pathology
shows a major improvement (13225).

[1131] FIG. 133 is a diagram showing an MM evaluating
small molecule therapy biomarker feedback and recom-
mending a novel synthetic drug which shows positive effect.
A small molecule therapy (13325) is applied at phase 1
(13305) and an MM evaluates biomarkers to assess protein
target and drug fit (13330) at phase 2 (13310). The MM
evaluates biomarkers and recommends a novel synthetic
drug (13335) and the novel synthetic drug therapy is applied
(13340) at phase 3 (13315). The MM evaluates biomarkers
at phase 4 (13320) to show a positive effect (13345).
[1132] FIG. 134 is a diagram showing an MM analyzing
a protein target, identifying a drug candidate and assessing
the drug candidate effects on the protein target. An MM
(13415) analyzes (13420) a patient protein target (13405).
The MM inputs patient genetic profile (13435) data and data
from bio and gene databases (13435) in order to analyze the
patient protein target. The MM identifies a drug candidate
(13425) and the drug candidate is applied to the patient
protein target (13430). After applying the drug candidate,
the MM assesses the drug candidate effect on the protein
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target by mapping drug potentialities on the target (13440)
and the MM estimates probabilities of drug candidate on
different genetic profiles (13445).

[1133] FIG. 135 is a diagram showing an MM assessing
disease progress with and without therapy intervention. In
one mode, a drug therapy (13550) is applied to a patient at
an early stage shown here over five phases (13505, 13510,
13515, 13520 and 13525). In another mode, no therapy
(13555) is shown over five phases (13505, 13530, 13535,
13540 and 13545). An MM assesses the disease progress
with and without therapy (13560). As shown in this figure,
the mode with the drug therapy applied improves the
patient’s pathology condition, while the mode without drug
intervention recognizes a degradation in the performance of
the patient’s pathology condition.

[1134] FIG. 136 is a diagram showing an MM evaluating
two drug therapy options in relation to no therapy control
and ranking two therapy effects. Over five phases, several
options are shown, including no therapy (13653) applied to
show a diagnostic prognosis as the control (13662) over the
five phases (13605, 13633, 13637, 13640 and 13643). Drug
therapy 1 (13650) is applied early in the five phases (13605,
13620, 13623, 13627 and 13630), producing lesser relative
therapeutic effects (13659). Drug therapy 2 (13647) is
applied early in the five phases (13605, 13608, 13611, 13614
and 13617), producing the best relative therapeutic effects
(13656). The MM evaluates the two drug therapy options in
relation to the no therapy control option and ranks the two
therapy effects.

[1135] FIG. 137 is a diagram showing an MM identifying,
predicting and recommending various drug therapy options
to solve a patient pathology. After an MM diagnoses a
patient pathology based on an abnormal protein (13705), the
MM identifies different therapy options (13710). The MM
plots comparative predictive trajectories of therapy options
on a graph (13715) and the MM predicts therapy options
based on patient pathology analysis and evolving biomark-
ers (13720). The MM compares various therapy options
based on projected feedback (13725) and the MM recom-
mends therapy solution options (13730). The MM designs a
novel synthetic drug therapy for a specific patient genetic
profile (13740) and the MM matches the novel synthetic
drug to the protein target (13745). The MM recommends a
specific drug therapy (13735) based on the analysis of
options.

[1136] FIG. 138 is a diagram showing an MM analyzing
biomarkers to predict or select treatment options. A protein
target (13805) is assessed over time (13815, 13820 and
13825) and biomarkers are assessed (13810) at each stage
(A, B and C). The MM performs an analysis of the bio-
markers (13830) and evaluates different treatment options
(13835). The MM assesses probability of success of each
treatment to address the protein target (13840) and the MM
predicts a treatment response (13845). The MM identifies
biomarkers that match a specific therapy protocol to bio-
markers (13845) and the MM selects a successful treatment
option (13850).

[1137] FIG. 139 is a diagram showing an MM analyzing
patient biomarkers on a scale and recommending different
drug treatments at different times in evaluation of disease
progress. A patient pathology evolution (13940) is shown
over five phases (13905, 13910, 13915, 13920 and 13925).
A drug therapy #1 (13935) is applied at phase 2, a drug
therapy #2 is applied at phase 3 and an MM analyzes patient



US 2025/0322963 Al

biomarkers (13945) at phases 3, 4 and 5. The MM recom-
mends a new drug therapy at a later evaluation (13955) and
the MM recommends a drug treatment (13950). The drug
therapy options are mapped to a prognostics score (13965)
scale (13960) consisting of a range of five measures.

[1138] FIGS. 140-157 describe MMs applied to drug
clinal trials.
[1139] FIG. 140 is a diagram showing an MM tracing a

control arm of drug clinical trials. Electronic health record
patient data are aggregated (14005) and analyzed in medical
databases (14010). The medical database data, EHR data
and ML algorithms (14015) are input into an MM (14050).
The MM analyzes patient data on the presence of abnormal
protein biomarkers (14020) and genetic mutations (vari-
ances) (14025) in a group (14030, 14035 and 14040) of
qualified patients (14045). The MM generates an analysis of
the progress of the patients’ disease without therapy
(14060), a projected progress of the untreated disease in
comparison to the progress of patients treated with a drug
candidate (14065) and a diagnostic prognostics of an
untreated control arm of patients performed in silico by
tracking the trajectory of the disease development (14070).
[1140] FIG. 141 is a diagram showing an MM applied to
drug clinical trials for precision diagnosis and emulation of
virtual patients. In a control arm (14135), a patient 1 (14105)
is shown progressing with a disease over four phases (14110,
14115, 14120 and 14125) illustrating a diagnostic prognos-
tics (14130) description of the evolution of the disease. In an
active arm (14140), a patient 2 (14145) is shown progressing
with a disease over four phases (14150), 14155, 14160 and
14165) illustrating a therapeutic prognostics (14190) evo-
lution of the disease after patient 2 was provided with a
precision diagnosis (14170) and a therapy candidate in the
active arm of the drug clinical trials. The data from the
control arm and the active arm are forwarded to an MM
(14135). The MM generates virtual patients based on the
diagnostic prognostics of disease evolution without treat-
ment (14175). The MM emulates real patients in hybrid drug
clinical trials (14180). Finally, the MM analyzes and com-
pares virtual and active patients to assess precise disease
diagnoses and prognoses (14185) and to evaluate the effec-
tiveness of the drug candidate.

[1141] FIG. 142 is a flow chart showing MMs analyzing
and aggregating patient data in the active arm of clinical
trials. After the MMs analyze a set of patient data in trials
(14205), the MMs assess the patients’ drug candidate reac-
tions (14210). The MMs identify and analyze biomarkers to
track patients to enable drug reaction predictions (14215)
and the MMs compare data from the active arm patients
overtime (14220). The MMs predict reactions to drugs in
patients with similar characteristics (14225) and the MMs
identify and assess patient drug reaction trajectories
(14230).

[1142] FIG. 143 is a diagram showing MMs applied to
track active arm patient progress and compare to control arm
patient progress. The control arm (placebo) (14335) is
tracked over five phases (14305, 14310, 14315, 14320 and
14325) in a diagnostic prognostics (14370) analysis. The
active arm (14340) is tracked over five phases (14345,
14350, 14355, 14360 and 14365) in a therapeutic prognos-
tics (14380) analysis. An MM (14390) analyzes the bio-
marker data on patient progress (14385) in the active arm.
An MM (14330) analyzes the control arm and active arm
data in order to compare the effectiveness of the drug

Oct. 16, 2025

candidate relative to the placebo by analyzing the prospec-
tive trajectories of disease progress (14375).

[1143] FIG. 144 is a diagram showing an MM comparing
and aggregating control and active arms data. The control
arm (placebo) (14405) is shown over five phases (14410,
14415, 14420, 14425 and 14430). The control arm patient
biomarkers are assessed as the disease progressed without
drug therapy (14445). An active arm (14455) is shown over
five phases (14460, 14465, 14470, 14475 and 14480), with
patient gene, RNA and protein abnormalities identified
(14485) in biomarkers. The active arm patient biomarkers
are assessed as the disease progresses with drug therapy
(14450). An MM 914435) compares the data in the control
arm and the active arm of the drug clinical trials. The MM
drug trial administrator applies the MM to aggregate clinical
trial data into a general model (14490).

[1144] FIG. 145 is a diagram showing an MM applied to
analyze biomarker data feedback of a drug to target a
specific protein and analyze molecular interactions to show
drug effectiveness. A patient with a specific genetic profile
is identified with a protein target (14505). A specific drug is
applied to target a unique protein abnormality (14510). The
patient progress is assessed over four phases (14515, 14520,
14525 and 14530). Biomarkers are assessed or interpreted at
each stage of the drug treatment in order to track the disease
evolution (14535). The patient disease progress and drug
reaction data are input into an MM (14540). The MM tracks
molecular interaction processes at the source of the disease
progress (14545) and molecular interactions and protein
pathways are mapped in the MM to assess drug effectiveness
(14550).

[1145] FIG. 146 is a diagram showing an MM diagnosing
a precise disease (and identifying abnormal protein targets)
and identifying drug candidate options to match to the
protein targets. An MM (14615) analyzes patient (14610)
gene, RNA and protein abnormal biomarkers in order to
identify protein target in precision diagnostics (14605). The
MM performs an in silico analysis to identify drug candi-
dates to target disease dysfunction protein(s) (14620). The
MM tests the drug candidates on virtual patients (14625) and
specific drug candidate(s) are selected to test in clinical trials
(14630).

[1146] FIG. 147 is a diagram showing an MM analyzing
aggregated control arm and active arm data. A group of
patients (14705) are shown in a control arm, with the control
arm patient data aggregated (14710). A group of patients
(14730) are shown in an active arm, with the active arm
patient data aggregated (14735). These data are input into an
MM (14720), which is managed by a clinical trial admin-
istrator (14715). The MM performs an analysis and com-
parison of the control arm and the active arm data (14725).
[1147] FIG. 148 is diagram showing an MM analyzing
hybrid control arm (including virtual patients) diagnostic
prognostics data and active arm therapeutic prognostics
data. A hybrid control arm (14815) is shown with real
patients (1,2 and 3) (14820, 14825 and 14830). Each patient
has an MM. Patient 1 has an MM 1 (14835), patient 2 has
an MM 2 (14840) and patient 3 has an MM 3 (14845). Data
from the placebo are analyzed in the MMs in order to
generate data on virtual patients (4, 5 and 6) (14850, 14855
and 14860); the virtual patient data are constructed from
diagnostic prognostic data in the MMs. An active arm
(14867) is shown with four patients (7, 8, 9 and 10) with
MM?7 (14882), MM 8 (14885), MM 9 (14888) and MM 10
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(14891). Data from these therapeutic MMs analyze the
therapeutic prognostics data (14895). An MM (14810),
which is managed by a clinical trial administrator (14805),
analyzes the hybrid control arm patient data, including data
on virtual patients, and the active arm patient data.

[1148] FIG. 149 is a diagram showing an MM analyzing
therapeutic prognostics biomarker data from application of
a drug candidate and modifying the drug to optimize effec-
tiveness. A drug’s effectiveness is assessed in an MM over
six phases (1-6) (14910, 14915, 14920, 14925, 14930 and
14935). In phase 1, patient gene, RNA or protein abnormal-
ity data are detected (14905) and a drug candidate is applied
(14940). The patient biomarkers are assessed to track the
drug efficacy (14945) over phases 2-6. At phase 2, thera-
peutic biomarker data are analyzed in an MM (14955). At
phase 3, the drug’s deficiency is identified by comparing
biomarker data to a placebo (14960). At phase 4, a new drug
is applied or the initial drug dosage is modified (14965). At
phase 6, the drug effectiveness is identified (14950).
[1149] FIG. 150 is a diagram showing an MM predicting
drug performance and modifying the drug when actual
performance lags. Drugs are assessed over eleven phases
(15005-15055). In the first phase, a drug candidate #1
(15060) is applied and in the first five phases, an MM
receives biomarker feedback data (15065). In phase 5, the
MM indicates a need to change to drug #2 (14070). The MM
makes predictions of the drug’s performance (15075) in
phases 6-9, but the actual performance of drug #2 is medio-
cre. At phase 9, the MM indicates a need to change to drug
#3 (14080). In phases 10 and 11, the effectiveness of the
most recent drug shows marked improvement.

[1150] FIG. 151 is a diagram showing MMs analyzing
biomarker data from clinical trial phases I and II to assess a
drug candidate and modifying or replacing the drug in phase
III. In phase I, MMs (15110 and 15120) analyze data from
the control arm (15105) and the active arm (15115). The
active arm of phase II analyzes the biomarker data from the
drug candidate (15125) application. In phase II, an MM
(15135) analyzes data in a control arm (15130) and an MM
(15145) analyzes data in the active arm (15140). The active
arm MM recognizes that the biomarker data reveals limited
effectiveness (15150) of the drug application. In phase III,
the MM (15160) analyzes control arm data (15155), which
shows the progress of the disease without therapeutic inter-
vention. In the phase III active arm (15165), the MM
(15170) shows a drug candidate is modified or replaced
(15175).

[1151] FIG. 152 is a flow chart showing MMs analyzing
different patient genetic, RNA or protein abnormalities in
stratified sub-types to apply drug candidates to different
patient clusters. Once MMs apply combinatorial optimiza-
tion algorithms to identify disease targets (15205), patients
are stratified by MMs into different groups based on sets of
genetic mutations, dysfunctional RNA or abnormal proteins
(15210). The MMs treat different sets of patients as a
separate class with different dysfunctional genes, RNA or
proteins (15215) and each patient class may be treated
separately with a different single drug or combinations of
drugs (15220). Patients with similar but differentiated
genetic or protein profiles are categorized by MMs into
different clusters (15225) and different patient groups are
treated with differentiated drugs to target their specific
diseases (15230). The MMs track therapeutic prognostics of
each disease subtype (15235).
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[1152] FIG. 153 is a diagram showing an MM applied to
analyze the source of a genetic disease and to identification
of a drug to treat the disease. After a genetic mutation is
identified (15305) and an orphan genetic disease is diag-
nosed (15310), an MM (15315) identifies a protein target
(15320) and develops a drug candidate to fit the protein
target by apply ML, DL and/or Al algorithms (15325). The
MM tracks limited clinical trial data (15330) and analyzes
patient biomarker data (15335) over time. The MM analyzes
disease protein interaction mechanics and drug candidate
operation (15340).

[1153] FIG. 154 is a diagram showing a patient relation-
ship management program coordinating clinical trials with
MMs and PHAs. Patient 1 (15415), assisted by a PHA
(15420) inputs data into an EHR 1 (15425), data from which
is imported into MM 1 (15435) by a PHA (15430). Similarly,
patient 2 (15450), assisted by a PHA (15455) inputs data into
an EHR 2 (15460), data from which is imported into MM 2
(15470) by a PHA (15465). Medical databases (15405 and
15410) input data into the MMs. A PHA (15440) facilitates
the transfer of data from MM 1 and MM 2 to a PRM
(15440). These data are then applied to drug clinical trials
(15445).

[1154] FIG. 155 is a flow chart showing drug companies
generating a doctor network to coordinate clinical trials on
targeted patients. After specialist physicians identify the
molecular sources of a patient’s disease (15505), the spe-
cialists outsource the drug development to drug companies
(15510). The drug companies coordinate a cluster of patients
by generating a doctor network to focus on clinical trials to
treat a specific malady (15515) and the drug companies and
the specialists coordinate the narrow drug clinical trials
(15520).

[1155] FIG. 156 is a diagram showing an MM generating
virtual control arm data from diagnostic prognostics data to
compare to therapeutic prognostics data of the active arm.
Patient 1 (15605) data are input into an MM (15610) and
patient 2 (15615) data are input into an MM (15620). The
MMs analyze biomarker data for diagnostic prognostics
(15625). The patient data are input into a medical database
(15630). An MM (15635) accesses the medical database and
the prior patient diagnostic prognostics data are input into a
virtual control group (15640). The virtual control group is
computationally similar to a real control arm (15645). An
MM applies virtual control arm data to clinical trials (15650)
and the MM compares therapeutic prognostics data of an
active arm of clinical trial to the virtual control arm virtual
diagnostic prognostics data (15655).

[1156] FIG. 157 is a flow chart showing MMs applied to
generate synthetic patient data to use as virtual patient data
of a hybrid control arm of drug clinical trials. GANs are
applied to generate synthetic patient data from protein
language models (15705). MMs apply ML algorithms to
analyze disease features, genetic mutation categories, dys-
functional proteins, protein-protein interactions, intra-cellu-
lar protein pathways and drug-target relations (15710). MMs
generate drug candidate options to target particular disease
targets (15715) and the MMs test drug candidates virtually
(15720). Clinical trials apply MMs to analyze synthetic
patient data (15725) and the clinical trial control arm may be
completely virtual or hybrid (15730). The MMs apply
therapeutic prognostics to predict effects of drug candidates
(15735).
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[1157] FIGS. 158 to 163 refer to applications of MMs to
pre-emptive medicine.

[1158] FIG. 158 is a diagram showing an MM assessing
patient genetic and hereditary data to diagnose, predict and
treat patient diseases that may develop in the future. Patient
hereditary data (15805) and patient genetic data (15810) are
input into an MM (15815). The MM identifies patient
genetic, RNA and protein dysfunctions (15820) and the MM
diagnoses a patient disease (15823). The MM develops a
diagnostic prognostics assessment of the patient disease
evolution (15825). The MM predicts patient risks of chronic
disease(s) developing in the future (15830). The MM rec-
ommends targeted a treatment plan for potential future
disease(s) (15835).

[1159] FIG. 159 is a flow chart showing MMs analyzing
patient biomarker data to develop pre-emptive pre-diagnos-
tic prediction of a probable future patient disease. After
MMs collect biomarker data from patients (15905), MMs
analyze biomarker data to build models of future probable
disease risks (15910). MMs compare patient biomarker data
to a database of genetic, RNA and protein data of similar
patients’ pathologies (15915) and the MMs develop predic-
tions of probable scenarios of chronic disease development
(15920). The MMs analysis develops a pre-diagnosis in
which a propensity of a disease is probabilistically identified
(15925) and the MMs predict the prospects of a disease in
the future (15930). The MMs predict the probable progres-
sion of the disease (15935) and the MMs make preemptive
pre-diagnostic prediction(s) of the progress of a probable
disease development over time (15940).

[1160] FIG. 160 is a diagram showing an MM analyzing
biomarker data to assess probable scenarios of neuro-degen-
erative disease development trajectories over time. At age
60, a patient’s genetic or proteomic biomarkers (16030) are
analyzed and at age 65 a patient’s imaging biomarkers
(16035) are analyzed in an MM. The MM projects probable
scenarios of neurodegenerative disease development trajec-
tories (16040). In scenario 1 (16015), the patient is projected
to have a 20% chance of development of a significant
neurodegenerative disease by age 80 (16045). In scenario 2
(16020), the patient is projected to have a 50% chance of
development of a mild form of neurodegenerative disease by
age 80. In scenario 3 (16025), the patient is projected to have
a 30% chance of a benign form of neurodegenerative disease
by age 80.

[1161] FIG. 161 is a diagram showing an MM applying Al
and ML to analyze biomarker and biomedical database data
to identify future disease progression scenarios. Patient
biomarker data are assessed over five phases (16110, 16115,
16120, 16125 and 16130). These patient biomarker data,
medical database (16105) data and ML and Al algorithms
(16140) are imported into an MM (16135). The MM iden-
tifies probable future disease progression scenarios (16145).
The patient is monitored for evidence of the likelihood of
onset of symptoms (16150). As these symptoms present, the
model is updated.

[1162] FIG. 162 is a diagram showing an MM developing
and testing therapeutic options after pre-diagnosis of prob-
able disease progression. Patient biomarker data (16210),
biomedical database data (16205) and ML and Al algorithms
(16215) are input into an MM (16217). The MM probabi-
listically predicts a pre-diagnosis of a prospective disease
(16220) based on an analysis of these data. The MM
develops therapeutic options (16225), applies a drug
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(16240) and analytically predicts drug reactions (16230).
The MM assesses therapy options (16245) and identifies
scenarios of disease trajectories with different therapy
options (16235). After feedback from evaluation of the drug
application, there is a need to modify the drug application
(16250). The process then repeats with the new drug of
evaluating the new drug, predicting drug reactions and
identifying scenarios of disease trajectories with the new
therapy options.

[1163] FIG. 163 is a diagram showing an MM applying,
assessing and modifying drug therapy options in pre-emp-
tive personalized medicine. An MM (16305) performs a
diagnostics and diagnostic prognostics (16310) analysis in
order to diagnose a probable pre-emptive disease scenario
(16325). The MM identifies three scenarios A (16335), B
(16340) and C (16345). An MM (16315) performs a thera-
peutics (16320) analysis in order to apply a drug therapy
option (16330). Biomarkers assess the effectiveness of the
therapy (16350), the drug is modified (16360) and the
disease expression is delayed (16365). In another therapeu-
tics scenario, the MM develops a novel synthetic drug
(16355) and the disease expression is delayed (16370).

[1164] The KRAS gene has been shown to generate some
types of cancers. In particular, specific mutations in the
KRAS gene are traced to some cancers, particularly lung,
CRC and pancreatic cancer. For example, a KRAS G12
variant may cause some forms of pancreatic cancer. In order
to address this risk, KRAS inhibitors are applied. An mRNA
vaccine may be configured to stimulate an immune response
e.g., to attack a specific cancer mutation such as a KRAS
variant. mRNA vaccines may, therefore, represent a novel
therapeutic modality. Other therapeutic modalities may be
applicable to blocking KRAS variants, including gene edit-
ing (CRISPR-Cas9), RNA-guided DNA editing tools
(CRISPR-Cas12), RNA editing (CRISPR-Casl3) and
mRNA therapies. In the case of programmable RNAI thera-
peutic modalities, a gene expression can be silenced. These
novel therapeutic modalities are configured to prevent dis-
ease expression, particularly in patients with genetic muta-
tions that are known to generate particular diseases. MMs
are well suited to analyze patient KRAS variants and to
develop personalized therapies to target these mutations.

[1165] A class of biomarker for pre-emptive medicine
includes exosomes, which are 30-150 nanometer vesicles
emitted by cells and which are comprised of protein, DNA,
RNA, lipids and small molecules and typically enclosed in
a lipid membrane. Though exosomes are involved in cellular
networking, the contents of exosomes can reveal cellular
disease characteristics. In a sense, exosomes supply an
inter-cellular communications system. An exosome complex
is also shown to contain proteins that damage RNA. Exo-
somes may represent a sort of cellular waste management
system that illustrates the causes and effects of some chronic
diseases.

[1166] Consequently, exosomes provide an excellent bio-
marker for understanding, describing and predicting disease
states. Exosomes are implicated in diseases as varied as
cancer, neurodegenerative disease and inflammatory dis-
ease. In particular, exosomes may influence the immune
system. Exosome dysregulation may be a factor in some
autoimmune diseases. Though exosomes are recognized as
an important class of biomarker for diagnostics and diag-
nostic prognostics, they may also be represented as vehicles
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for therapies in their ability to carry protein or RNA solu-
tions into cells by penetrating cellular membranes.

[1167] Exosomes may prove to be an important tool for
predictive pre-emptive medicine by supplying biomarkers
for predicting disease presence and disease state evolution.
MM are applied to identify exosomes and to describe their
inter-cellular behaviors in the emergence of disease. Addi-
tionally, MMs may provide modeling solutions for thera-
peutic modalities involving exosomes as vehicles for trans-
mission of novel therapies.

[1168] FIGS. 164 top 170 describe MMs applied to auto-
immune disorders.

[1169] FIG. 164 is a diagram showing an MM stratify
autoimmune disease subgroups by analyzing different
classes of molecular biomarkers. Al (16410) and ML
(16415) algorithms are applied in an MM (16405), which
stratifies autoimmune disease subgroups by analyzing bio-
markers (16420). The Subgroups include abnormal gene
RNA and protein biomarkers (16425), lipid biomarkers
(16430), cytokine biomarkers (16435), small molecule
metabolite biomarkers (16440), epigenetic small molecule
biomarkers (16445) and Treg biomarkers (16450).

[1170] FIG. 165 is a diagram showing an MM developing
a diagnosis and diagnostic prognosis of an autoimmune
disease. Patient genetic and epigenetic biomarker data
(16505) are input into an MM (16515) and ML and Al
algorithms (16520) are applied in the MM to analyze the
biomarker data. The MM diagnoses an autoimmune disease
(16525) and the MM develops a prognosis of the patient
disease development (16535). From the diagnostic prognos-
tics analysis, the MM predicts the evolution scenarios of the
disease trajectories (16540). From the diagnosis of the
disease, the MM proposes therapy options (16530).

[1171] FIG. 166 is a diagram showing MMs building
models that design novel synthetic proteins and novel syn-
thetic antibodies. Al and ML algorithms (16610) are applied
in an MM (16615) to analyze antibody data from an anti-
body library (16605). The MM identifies a T cell receptor
(16620) and an autoantibody (16625). From the T cell
receptor analysis, the MM designs a novel synthetic protein
(16630) and an mRNA drug (16635) or vaccine. From the
autoantibody analysis, the MM designs a novel synthetic
antibody (16640). By applying data from the antibody
library, the MM isolates and generates antibody fragments
with unique variants to match particular autoantigens
(16645). The MM identifies an optimal match of synthetic
antibodies with prospective targets (16650).

[1172] FIG. 167 is a flow chart showing an MM designing
novel synthetic therapies to solve abnormal autoimmune
behaviors and optimizing a patient’s immunity. An MM
(16705) is applied to design novel Treg cells (16710). The
MM identifies an mRNA code to modify T cells into custom
Treg cells (16715). By applying the mRNA code as a drug,
the immune system circuitry is reprogrammed (16720) and
the MM tracks and adapts the therapy to solve abnormal
autoimmune behaviors (16725). The MM then designs novel
synthetic proteins (16725) and the novel synthetic proteins
stimulate Treg cells (16730). The patient immune system is
re-equilibrated (16735) and the MM tracks and adapts
therapy to optimize the patient’s immunity (16740).

[1173] FIG. 168 is a diagram showing an MM identifying
and reprogramming B cell receptors to bind an antibody to
a specific antibody target. A B cell (16805) is shown with
two receptor (16810 and 16815). An MM identifies B cell
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receptors and reprograms (16830) receptors (16810 and
16815). For example, an mRNA sequence can be configured
to reprogram the receptors. The receptors are reprogrammed
to target a specific protein (16825) and the reprogrammed
receptors are configured to bind to a specific antibody target
(16820).

[1174] FIG. 169 is a diagram showing an MM designing
T cells to attack over-active B cells that overproduce autoan-
tibodies that attack autoantigens in CAAR T therapy. An
engineered T cell (16905) is shown attacking (16920) over-
active B cells (16910 and 16915). The antibodies are over-
produced and become autoantibodies that attack autoanti-
gens (16925).

[1175] FIG. 170 is a flow chart showing an MM applying
therapeutic modalities of SMC stem cells and RNA editing
to modify T cells and limit generation of autoantibodies. An
MM (17005) identifies autoimmune dysregulation (17010)
and develops novel solutions (17015). In one solution
option, MSC stem cells are configured to replace T cells or
B cells (17020) and the immune is reprogrammed to limit
the generation of autoantibodies (17025). In another solution
option, CRISPR-Cas13 is applied to develop an RNA solu-
tion to modify T cells (17030). In this option, modified T
cells limit B cell generation (17035) and B cells limit
generation of autoantibodies (17040).

[1176] MMs are applied to modeling complex dynamics
involving the interaction of two or more autoimmune dis-
orders. As an example, a patient may be diagnosed with both
Hashimoto’s disease (hypothyroidism) and psoriatic arthri-
tis. About a third of psoriatic arthritis patients are also
diagnosed with hypothyroid disease, suggesting a link. In
some cases, these diseases represent genetic inheritances.
Typically, each disease expresses with specific symptoms,
such as arthritis inflammation of the joints.

[1177] However, MMs may analyze the dynamics
between the two disorders. In the case of the thyroid, the
degradation of the thyroid gland by the psoriatic arthritis
may be responsible for the diminished thyroid output. A
psoriatic arthritis “flare-up” may accelerate the thyroid gland
degradation process. Consequently, the reduced thyroid
adversely affects the psoriatic arthritis flare-up episodes. In
some cases, a viral infection may stress the immune system,
which stimulates the psoriatic arthritis episodes, putting a
third variable in the mix of the dynamics of the auto-immune
disorders. While monitoring and supplementation of the
thyroid levels will stabilize the thyroid gland, the effect of
thyroid supplementation may suppress the psoriatic arthritis
flare-up episodes. In addition to thyroid supplementation to
stabilize the thyroid levels, treatment of the psoriatic arthri-
tis with biologics will stabilize this condition as well. The
biologics will tune the immune system to minimize the
autoantibodies and limit the psoriatic arthritis symptoms. An
MM will assess periodic biomarkers of each disease over
time and adjust the medications. Finally, in order to prevent
or suppress a prospective virus that may stimulate the
immune system and activate psoriatic arthritis symptoms, a
vaccine regimen may be applied.

[1178] FIGS. 171 to 180 describe MMs applied metastatic
cancer.
[1179] FIG. 171 is a list showing metastatic cascade

stages. In stage 1, cancer cells separate from a primary tumor
(17105). In stage 2, cancer cells invade adjacent tissue
(17110). In stage 3, circulating tumor cells (CTCs) migrate
to blood or lymphatic vessels (17115). In stage 4, CTCs exit
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blood lymphatic vessels at another organ (17120). In stage
5, several micrometastatic nodules form (17125). In stage 6,
systematic metastasis is expressed (17130). In stage 7, drug
resistance of tumor cells (17135) is presented. Unique
differentiated biomarkers are identifiable at each stage. An
MM is programmed to recognize each of these stages.
[1180] FIG. 172 is a diagram showing a modified thera-
peutic modality applied to treat a secondary tumor. In a
primary tumor site (172050), a mutated gene profile in
cancer cells (17210) is detected in biomarker 1. A circulating
tumor cell (CTC) (17230) moves to a secondary tumor site
(17215). At the secondary site, a modified gene profile is
detected in biomarker 2. The secondary tumor is treated with
a modified therapy (17225) from the therapy supplied to the
primary tumor. MMs are applied to describe these metasta-
ses, to detail the diagnoses and to design two or more
therapies to treat the cancer at each stage of development.
[1181] FIG. 173 is a diagram showing therapies applied to
address CICs at stages 3, 4 and 5 after unique stage
biomarkers are identified. Seven stages of cancer metastasis
are shown (1-7). At stage 1, the primary tumor develops and
is detected. At stage three, CTCs migrate to blood or
lymphatic vessels (17310). Between stages 3 and 4, circu-
lating tumor DNA (ctDNA) biomarkers are detected
(17315). At stage 4, CTCs exit blood or lymphatic vessels at
another organ (17340). Between stages 4 and 5, circulating
tumor DNA (ctDNA) stage four biomarkers are detected
(17320). At stage 5, micrometastatic nodules form (17335)
and ctDNA biomarkers (17325) are detected. At stage 6,
tumors spread to multiple sites. At stage 7, the metastatic
cancer process is maximized. MMs describe these metastatic
cancer stages to provide diagnostics, diagnostic prognostics,
therapeutics, and therapeutic prognostics analyses.

[1182] FIG. 174 is a diagram showing ctDNA of CTCs at
secondary tumor site enabling the identification of a primary
tumor site. A CTC at stage 3 (17410) in a primary tumor
(17405) is transmitted in a blood vessel (17415) to a
secondary site (17420) where it generates a secondary tumor
(17420). Detection of a biomarker of the ctDNA at stage 4
in the secondary tumor site can identify the location of the
primary tumor site (17430). MMs are configured to analyze
these processes.

[1183] FIG. 175 is a diagram showing metastasized cancer
cells, with modified genetic profiles, reprogrammed in their
new tissues. After cancer cells (17510), 17520, 17530 and
17540) spread from a primary organ (175050) to other
organs (2, 3 and 4) (17515, 17525 and 17535), the colonized
cancer cells adapt to and reprogram their surrounding envi-
ronment (17545). The genetic profiles of the metastasized
cancer cells at secondary sites vary from genetic architecture
of cancer cells at the primary site as revealed by analyses in
MM, as the cancer cells adapt to their new organs.

[1184] FIG. 176 is a diagram showing CSC’s reprogram-
ming protein pathways to resist drugs and immunity and
reprogramming a secondary tumor site micro-environment.
A cancer stem cell (CSC) in a primary tumor (17610) shows
drug resistance (17615) and immune resistance (17625) as
the CSC reprogrammability features evade drugs and immu-
nity. The CSC shows protein pathway remodulation
(17620). The CSC (17635) is transmitted to a secondary
tumor site (17630) and the CSC reprograms the microenvi-
ronment of secondary tumor site (17640). MMs analyze
these processes to develop diagnoses, prognoses and thera-
peutic modalities.
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[1185] FIG. 177 is a diagram showing detection of mRNA
and ctDNA biomarkers predicting drug and immunity resis-
tance at secondary tumor sites. A miRNA-x (17720) is
detected at a primary tumor (17705) the shows limited drug
effectiveness (17710). A ctDNALI is transmitted to tumor 2
(17715) and miRNA-y (17725) is shown to be immune
resistant (17740). A ctDNA2 is transmitted to tumor 3
(17730) and miRNA-z (17735) is shown to be drug resistant
(17745). MMs analyze these processes.
[1186] FIG. 178 is a diagram showing an MM analyzing
biomarkers to diagnose, predict and treat cancer at each
stage of development. Cancer cells spread from a primary
tumor (17805) to tumor 2 (17810) and tumor 3 (17815).
Biomarker data (17820) from the three tumors are input into
an MM (17820). The MM identifies the primary cancer
(17825), predicts prognosis scenarios at each stage (17830),
develops drug treatment protocols (17835), tracks metastasis
over stages (17840), updates the treatment protocol (17845)
and develops therapeutic prognosis scenarios (17850).
[1187] FIG. 179 is a diagram showing an MM applying
different Al and ML techniques for cancer diagnostics,
prognostics and therapeutics. An MM (17905) applies GDL
algorithms (17910), including 2D and 3D GDL algorithms,
for diagnostic analysis (17915). The MM applies GDL and
GenAl algorithms (17920) to diagnostic prognostics
((17925). The MM applies GenAl and ML, including 2D
and 3D GDL and GenAl, algorithms (17930) to therapeutic
solutions (17935). The MM applies Al and ML algorithms
(17940) to therapeutic prognostics (17945). These advanced
ML, DL and Al algorithms solve descriptive and prescrip-
tive problems associated with metastatic cancer.
[1188] FIG. 180 is a diagram showing MMs analyzing
biomarkers at different stages of cancer metastasis, with
MMs developing novel drug therapies at each state. Bio-
markers (18005, 18010, 18015, 18020, 18025 and 18030)
are input into an MM (18035) across six stages. The MM
performs an analysis of the biomarkers. An MM analyzes the
biomarkers as protein targets (18040) and develops novel
drugs (18045), which are applied at stages 2 and 3. An MM
(18050) evaluates the biomarkers at stages three and four
and develops a novel synthetic drug (18055), which is
applied at stages 4 and 5. Antagomirs (18060) are detected
at stage 5 and analyzed by an MM (18065). The MM
identifies RNAs to target for drug development (18070),
which are applied at stage 6.
[1189] Although the present invention has been described
in relation to particular embodiments thereof, many other
variations and other uses will be apparent to those skilled in
the art. It is preferred, therefore, that the present invention be
limited not by the specific disclosure herein, but only by the
gist and scope of the disclosure.
1-84. (canceled)
85. A system of individualized medical modeling for
diagnosing a patient’s disease, the system comprising:
a computer consisting of hardware logic, memory com-
ponents and at least one database management system;
computer modeling software operable on the computer;
artificial intelligence (AI) or machine learning (ML) algo-
rithms operable on the computer;
a reference biology database or large language model
(LLM) with biomedical data on pathologies;
molecular biomarker data representing the patient’s dis-
ease, the molecular biomarker data including gene,
RNA and/or protein data;
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the computer modeling software analyzing the molecular
biomarker data and identifying dysfunctional patient
genes, RNAs and/or proteins;

the AI or ML algorithms comparing the molecular bio-
marker data, including the identified dysfunctional
patient genes, RNAs and/or proteins to the reference
biology database to identify a specific disease; and

the computer modeling software generating or updating
an individualized patient medical model to include the
identified dysfunctional patient genes, RNAs and/or
proteins and the identified specific disease.

86. The system of claim 85, wherein the patient’s disease
includes cardiovascular diseases, neurodegenerative dis-
eases, cancer, autoimmune diseases and genetic diseases.

87. The system of claim 85, wherein the Al algorithms
include GenAl algorithms, including at least one of genera-
tive adversarial networks (GANs), restricted Boltzmann
Machines (RNBs), variational autoencoders (VAEs), natural
language processing (NLP), large language models (LLMs)
or diffusion models or generative pre-trained transformers
(GPT).

88. The system of claim 85, wherein the Al algorithms
include geometric deep learning (GDL) algorithms, includ-
ing at least one of graph neural networks (GNNs), graph
attention networks (GATs), graph convolutional neural net-
works (GCNs), manifold-valued neural networks (MVNs),
spherical convolutional neural networks (SCNs), graphical
autoencoders (GAEs) or graph of graphs neural networks
(GoGNNgs).

89. The system of claim 85, wherein the Al algorithms
includes 3D geometric deep learning (3D GDL) algorithms,
including at least one of 3D graph neural networks (3D
GNN5s), 3D graph attention networks (3D GATs), 3D graph
convolutional neural networks (3D GCNs), 3D manifold-
valued neural networks (3D MVNs), 3D spherical convo-
lutional neural networks (3D SCNs), 3D graphical autoen-
coders (3D GAEs) or 3D graph of graphs neural networks
(3D GoGNN ).

90. The system of claim 85, wherein the Al algorithms
include generative 3D geometric deep learning (Gen 3D
GDL) algorithms, including at least one of generative 3D
graph neural networks (Gen 3D GNNs), generative 3D
graph attention networks (Gen 3D GATs), generative 3D
graph convolutional neural networks (Gen 3D GCNs), gen-
erative 3D manifold-valued neural networks (Gen 3D
MVNs) or generative 3D graph of graphs neural networks
(Gen 3D GoGNNSs).

91. A system of individualized medical modeling for
diagnosing a patient’s disease, the system comprising:

at least one computer comprising hardware logic, memory

components, software components and at least one
database management system;

computer modeling software operable on the at least one

computer;
at least one reference biology database storing gene,
RNA, protein and other biological data;

at least one biology large language model (LLM), includ-
ing at least one gene LLM, RNA LLM, protein LLM or
antibody LLM;

artificial intelligence (AI), machine learning (ML) or deep
learning (DL) software algorithms operable on the
computer;
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molecular biomarker data representing the patient’s dis-
ease, the molecular biomarker data including gene,
RNA and/or protein data;

the computer modeling software analyzing the molecular
biomarker data and identifying dysfunctional patient
genes, RNAs and/or proteins;
the Al or ML or DL software algorithms comparing the
molecular biomarker data, including the identified dys-
functional patient genes, RNAs and/or proteins to the
reference biology database or biology LLM to identify
a specific patient disease; and

the computer modeling software generating or updating
an individualized patient medical model to include the
identified dysfunctional patient genes, RNAs and/or
proteins and the identified specific patient disease.

92. The system of claim 91, wherein the computer is
remotely accessed in a data center by software as a service
(SaaS).

93. The system of claim 91, wherein the patient’s disease
includes cardiovascular, neurodegenerative, oncology, auto-
immune and genetic diseases.

94. The system of claim 91, wherein the AI, ML or DL
software algorithms conduct in silico experiments on patient
biological data.

95. The system of claim 91, wherein the computer mod-
eling software identifies a novel biomarker by analyzing
patient biological data.

96. The system of claim 91, wherein the computer mod-
eling software generates 4D simulations of abnormal protein
pathways and abnormal protein interactions.

97. The system of claim 91, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model,

wherein the Al or ML or DL software algorithms further

compares the molecular biomarker data, including the
identified dysfunctional patient genes, RNAs and/or
proteins to the reference biology database or biology
LLM to generate a prediction of the progress of the
patient’s disease, and

wherein the computer modeling software updates the

individualized diagnostic prognostics model to include
the prediction of the progress of the patient’s disease.

98. The system of claim 97, wherein the prediction of the
progress of the patient’s disease in the diagnostic prognos-
tics model is used in personalized medicine for pre-emptive
medicine.

99. A system of individualized medical modeling for
medical diagnostics to diagnose a patient’s disease, the
system comprising:

at least one computer comprising hardware logic, memory

components, software components and at least one
database management system;

computer modeling software operable on the at least one

computer;

at least one reference biology database storing gene,

RNA, protein and other biological data;

at least one geometric deep learning algorithm operable

on the at least one computer;
molecular biomarker data representing the patient’s dis-
ease, the molecular biomarker data including gene,
RNA and/or protein data;

the computer modeling software analyzing the molecular
biomarker data and identifying dysfunctional patient
genes, RNAs and/or proteins;
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the at least one geometric deep learning algorithm com-
paring the molecular biomarker data, including the
identified dysfunctional patient genes, RNAs and/or
proteins, to the reference biology database to generate
a diagnosis of the patient’s disease; and

the computer modeling software generating or updating
an individualized patient medical model to include the
identified dysfunctional patient genes, RNAs and/or
proteins and the diagnosis of the patient’s disease.

100. The system of claim 99, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model,

wherein the at least one geometric deep learning algo-

rithm further generates a prediction the progress of the
patient’s disease, and

wherein computer modeling software updates the indi-

vidualized diagnostic prognostics model to include the
prediction of the progress of the patient’s disease.

101. The system of claim 99, wherein the at least one
geometric deep learning algorithm is at least one generative
3D geometric deep learning algorithm.

102. The system of claim 99, wherein the at least one
geometric deep learning algorithm is at least one 3D geo-
metric deep learning algorithm.

103. The system of claim 102, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model,

wherein the at least one 3D geometric deep learning

algorithm further generates a prediction of the progress
of the patient’s disease, and

wherein the computer modeling software further updates

the individualized diagnostic prognostics model to
include the prediction of the progress of the patient’s
disease.

104. The system of claim 103, wherein the at least one 3D
geometric deep learning algorithm is at least one generative
3D geometric deep learning algorithm.

105. The system of claim 102, wherein the at least one 3D
geometric deep learning algorithm further develops a solu-
tion to a biological pathology and generates a personalized
therapy for the patient’s disease, and

wherein the computer modeling software further updates

the individualized patient medical model to include the
personalized therapy for the patient’s disease.

106. The system of claim 105, wherein the at least one 3D
geometric deep learning algorithm is at least one generative
3D geometric deep learning algorithm.

107. A system of individualized medical modeling for
predicting the progress of a patient’s disease after a therapy
is applied to the patient’s disease, the system comprising:

at least one computer comprising hardware logic, memory

components, software components and at least one
database management system;

computer modeling software operable on the at least one

computer;

at least one reference biology database storing gene,

RNA, protein and other biological data;

at least one 3D geometric deep learning algorithm oper-

able on the at least one computer;
artificial intelligence (AlI) or machine learning (ML) algo-
rithms operable on the at least one computer;

molecular biomarker data representing the patient’s dis-
ease, the molecular biomarker data including gene,
RNA and/or protein data;
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the computer modeling software analyzing the molecular
biomarker data and identifying dysfunctional patient
genes, RNAs and/or proteins after the therapy is pro-
vided to target a specific disease;
the artificial intelligence (Al) or machine learning (ML)
algorithms comparing the molecular biomarker data,
including the identified dysfunctional patient genes,
RNAs and/or proteins, to the reference biology data-
base to identify the specific disease of the patient;

the at least one 3D geometric deep learning algorithm
analyzing the molecular biomarker data, including the
identified dysfunctional patient genes and analyzing the
reference biology database and generating a prediction
of the progress of the patient’s disease after the therapy
is provided; and

the computer modeling software generating or updating

an individualized patient medical model to include the
dysfunctional patient genes, RNAs and/or proteins, to
include the identified target and to include the predic-
tion of the progress of the patient’s disease after the
therapy has been applied to the patient.

108. The system of claim 107, wherein the at least one 3D
geometric deep learning algorithm is at least one generative
3D geometric deep learning algorithm.

109. A system of individualized medical modeling for
predicting the progress of a control arm patient’s disease
without therapeutic intervention in the control arm of a drug
clinical trial, the system comprising:

at least one computer comprising hardware logic, memory

components, software components and at least one
database management system;

computer modeling software operable on the at least one

computer;

at least one reference biology database storing gene,

RNA, protein and other biological data;
at least one geometric deep learning or generative Al
algorithm operable on the at least one computer;
molecular biomarker data representing the control arm
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;
the computer modeling software analyzing the molecular
biomarker data of the control arm patient and identi-
fying dysfunctional patient genes, RNAs and/or pro-
teins;

the at least one geometric deep learning or generative Al

algorithm generating a prediction of the progress of the
control arm patient’s disease by analyzing the molecu-
lar biomarker data, including the identified dysfunc-
tional patient genes, RNAs and/or proteins and by
analyzing the reference biology database; and

the computer modeling software generating or updating

an individualized patient medical model for the control
arm patient to include the identified dysfunctional
patient genes, RNAs and/or proteins and the prediction
of the progress of the control arm patient’s disease
without therapeutic intervention in the control arm of
the drug clinical trial.

110. The system of claim 109 wherein the control arm
includes virtual patients, wherein the virtual patients are
emulated to represent an aggregation of patients with the
disease, and wherein the virtual patients are analyzed to
describe the progress of the disease without therapeutic
intervention.
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111. The system of claim 109, for predicting the progress
of a disease of an active arm patient’s disease with thera-
peutic intervention in an active arm of the drug clinical trial,

wherein the molecular biomarker data represents the

active arm patient’s disease,
wherein the computer modeling software analyzes the
molecular biomarker data of the active arm patient in
the active arm of the drug clinical trials after applica-
tion of at least one therapy and identifies dysfunctional
patient genes, RNAs and/or proteins,
wherein the at least one geometric deep learning or
generative Al algorithm generates a prediction of the
progress of the active arm patient’s disease, and

wherein the computer modeling software generating or
updating an individualized patient medical model for
the active arm patient to include the identified dysfunc-
tional patient genes, RNAs and/or proteins and the
prediction of the progress of the active arm patient’s
disease with therapeutic intervention in the active arm
of the drug clinical trial.

112. An integrated health record platform (IHRP) system
to assist in the assessment or prediction of the progress of a
patient’s disease, the system comprising:

at least one computer comprising hardware logic, memory

components, software components and at least one
database management system;

at least one storage device operatively connected to the at

least one computer;

computer modeling software operable on the at least one

computer;
at least one reference biology database storing gene,
RNA, protein and other biological data;

at least one geometric deep learning, machine learning or
generative Al algorithm operable on the at least one
computer;

biological data representing the patient’s disease, includ-

ing molecular biomarker data including gene, RNA,
protein and/or multiomics data;

the computer modeling software analyzing the molecular

biomarker data of the patient and identifying dysfunc-
tional patient genes, RNAs and/or proteins;

the at least one geometric deep learning, machine learning

or generative Al algorithm generating a prediction of
the progress of the patient’s disease;

the computer modeling software generating or updating

an individualized patient medical model for the patient
to include the identified dysfunctional patient genes,
RNAs and/or proteins and the prediction of the prog-
ress of the patient’s disease; and

wherein the individualized patient medical model is

stored in the at least one storage device of the IHRP
system.

113. The system of claim 112, further comprising medical
security software operable on the at least one computer.

114. The system of claim 112, further comprising natural
language processing software operable on the at least one
computer, the natural language processing software survey-
ing, translating, analyzing or summarizing medical articles
or patient charts.

115. A personal health assistant (PHA) system of intelli-
gent software agents for medical modeling to assist a
physician in generating or updating an individualized patient
medical model, the system comprising:
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at least one computer comprising hardware logic, memory
components, software components and at least one
database management system;

computer modeling software operable on the at least one
computer;

at least one reference biology database storing gene,
RNA, protein and other biological data;

biological data representing the patient’s disease, includ-
ing molecular biomarker data including gene, RNA,
protein and/or multiomics data;

a plurality of PHA intelligent agents operable on the at
least one computer and including Artificial Intelligence
(AI) algorithms, the plurality of PHA intelligent agents
interfacing with the computer modeling software, the at
least one reference biology database and the biological
data representing the patient’s disease;

the computer modeling software building or accessing an
individualized medical model for the patient;

at least one of the plurality of PHA intelligent agents
analyzing the molecular biomarker data of the patient
and identifying dysfunctional patient genes, RNAs
and/or proteins;

at least a second one of the plurality of PHA intelligent
agents generating a prediction of the progress of the
patient’s disease;

the at least one and the at least second one of the plurality
of PHA intelligent agents communicating their results
to the computer modeling software; and

the computer modeling software generating or updating
an individualized patient medical model for the patient
to include the identified dysfunctional patient genes,
RNAs and/or multiomics data and the prediction of the
progress of the patient’s disease.

116. The system of claim 115, further comprising:

a PHA typology that includes:

PHA-m, wherein the PHA-m is a model builder that
perform tasks associated with building MMs, such as
combining data into tables, graphs and models and
representing data in models or simulations;

PHA-a, wherein the PHA-a is an analyzer that perform
tasks involving analysis or synthesis of elements in
MMs;

PHA-s, wherein the PHA-s is a searcher that seeks out
data from databases;

PHA-c, wherein the PHA-c is a combiner that com-
bines two or more Al techniques or algorithms into
a hybrid synthesis for application to a particular issue
involved in a MM;

PHA-i, PHA-i is an interrogator that actively interro-
gates data in order to build or optimize a model;

PHA-mes, wherein the PHA-m is a messenger or
communicator that passes messages between models
and other agents;

PHA-b, wherein the PHA-b is a broker that interme-
diates between MMs and LLMs or medical data-
bases;

PHA-sec, wherein the PHA-sec is a security agent that
enables different levels of security in MMs agents
that enable different levels of security in MMs;

PHA-p, wherein the PHA-p is a predictor that forecasts
or predicts event scenarios based on MM data; and

PHA-sims, wherein the PHA-sim is a simulator that
constructs simulations from MMs.
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117. A patient relationship management system for build-
ing or accessing an individualized medical model for a
patient, the system comprising:

at least one computer comprising hardware logic, memory
components, software components and at least one
database management system;

computer modeling software operable on the at least one
computer;

at least one reference biology database storing gene,
RNA, protein and other biological data;

at least one geometric deep learning, machine learning or
generative Al algorithm operable on the at least one
computer;

biological data representing the patient’s disease, includ-
ing molecular biomarker data including gene, RNA,
protein and/or multiomics data;

the computer modeling software interfacing with a medi-
cal modeling system; and

the computer modeling software interfacing between a
patient or a doctor.

118. A system for medical modeling, the system compris-

ing:

computer modeling hardware including at least one CPU
or GPU logic circuit and at least one memory circuit;

computer modeling software operable on the computer
modeling hardware;

a database storing data;

a database management system coupled to the computer
modeling hardware and coupled to the database, the
database management system storing and accessing
data in the database;

a set of computer modeling levels contained in the data-
base, the computer modeling levels configured to diag-
nose, predict or treat a patient medical condition, the
levels including:

Level 1: General Patient Model;

Level 2: Diagnostics, Bioinformatics, Organ and Body
System Analyses;

Level 3: Molecular and Cellular Description and Analy-
sis;

Level 4: Structural Genetic Variant Combination Pathol-
ogy Identification;

Level 5: Functional Molecular and Cellular Pathology
Diagnosis;

Level 6: Diagnostic Prognosis Simulations;

Level 7: General Therapy Solutions;

Level 8: Unique Therapy Solution Genesis;

Level 9: Therapy Option Testing and Simulations;

Level 10: Therapy Prediction Scenarios;

Level 11: Unified Patient Model;

Level 12: Human Population Model; and

Level 13: Master Individualized Medical Model.

119. The system of claim 118 further including modular
modeling layers on Level 1, the modular modeling layers
comprising:

medical research and analysis models;

doctor observations and electronic medical records
(EMR) data generated models;

electronic health records (EHR) data inputs, aggregation
and analytics models;

patient history and hereditary data models;

patient blood, fluid and tissue test models; and

epigenetic models.
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120. The system of claim 118 further including modular
modeling layers on Level 2, the modular modeling layers
comprising;

genomic, proteomic, multiomic, metabolic and cell bio-

marker models;

diagnostic imaging models;

body system models;

electrical system and medical device models;

organ models;

artificial organ models; and

surgical models.

121. The system of claim 118 further including modular
modeling layers on Level 3, the modular modeling layers
comprising:

DNA, chromosome, single nucleotide polymorphisms

(SNPs), coding genes and non-coding gene models;
coding and non-coding RNA models;

protein and peptide models;

3D and 4D cell dynamics models;

multicellular network models; and

pathogen, vaccine, biologics and immune system models.

122. The system of claim 118 further including modular
modeling layers on Level 4, the modular modeling layers
comprising:

mutated gene models;

dysfunctional protein and peptide structure models;

cellular behaviors with dysfunctional DNA, RNA, pro-

teins and peptides models;

in silico laboratory models for experiments of dysfunc-

tional genes, RNA and proteins; and

epigenetics models of gene expression regulation.

123. The system of claim 118 further including modular
modeling layers on Level 5, the modular modeling layers
comprising:

functional models of dysfunctional structure of coding

genes, non-coding genes, single nucleotide polymor-

phisms (SNPs), RNA and non-coding RNA;
dysfunctional protein and peptide functions models and

dystfunctional protein function prediction models;
protein pathway mapping models;

protein-protein, protein-ligand and protein-ligand interac-

tion models;

drug-target and drug-disease interaction prediction mod-

els;

cellular machinery dysfunction and dysfunctional inter-

cellular models;

in silico experiments of dysfunctional genes, RNA and

proteins models; and

auto-immune and Treg models.

124. The system of claim 118 further including modular
modeling layers on Level 6, the modular modeling layers
comprising;

general patient pathology progression models;

4D simulation scenario prediction of pathology evolution

without therapy models;

biomarker models to identify novel biomarkers via analy-

sis of precise phase of disease progress;
patient-environment interactions models and track
patient-environment pathology progression models;
epigenetic models to analyze epigenetic patterns and
networks to identify pathology characteristics and pro-
gression; and
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pre-emptive medicine models for prediction and forecast-
ing of future potential or probably pathology progres-
sion.

125. The system of claim 118 further including modular

modeling layers on Level 7, the modular modeling layers
comprising:

summarizing and analyzing medical research and clinical
trial studies models;

rank and select exiting drug options models to fit medical
diagnoses;

identification of existing drug(s) models for unique
patient pathologies;

drug dose, side effect, toxicity and interactions evaluation
and prediction models; and

drug delivery vehicles models such as nanoparticles,
lipids and viruses.

126. The system of claim 118 further including modular

modeling layers on Level 8, the modular modeling layers
comprising:

identification models for gene or protein targets;

novel drug discovery models for, including experiments
for novel drug discovery;

RNA, peptide and protein novel design models;

design of novel synthetic drugs models;

antibody-antigen models;

large and small molecule, antibody/ADC, radio conjugate
and enzyme novel design for unique pathology models;

stem cell models;

gene, RNA, nc DNA and nc RNA editing models;

CRISPR-Cas9, CRISPR-Cas12, CRISPR-Cas13, siRNA
and programmable RNA and DNA models;

cellular programming and reprogramming therapy models

immune system therapy models;

endocrine therapy models; and

CAR T cell therapy models.

127. The system of claim 118 further including modular

modeling layers on Level 9, the modular modeling layers
comprising:

RNA, peptide, protein, antibody and enzyme novel drug
simulations models;

cellular mechanics, protein interactions and protein path-
ways models;

models for in silico experiments of optimal therapy
options models;

drug-target and drug-disease interaction simulations mod-
els;

compare and predict models to compare or predict control
group to pathology therapy group;

optimal probabilistic therapy selection models; and

precise therapy prediction and targeting models.

128. The system of claim 118 further including modular

modeling layers on Level 10, the modular modeling layers
comprising:

disease progression probabilities models with different
drug therapy options;

drug-target interaction prediction scenarios models;

4D simulation scenarios models of disease progression
with drug therapy option feedback;

drug reaction predictions models;

compare models to compare pathology diagnostic prog-
nostic simulations to therapy option prognostic simu-
lations;

patient cluster drug testing models;

79

Oct. 16, 2025

prediction models to predict therapy responses from bio-

markers;

multiomics models for drug prediction;

epigenetic biomarkers models to predict clinical response

to medical interventions; and

prediction and forecasting models of probable pathology

progression with therapy feedback.

129. The system of claim 118 further including modular
modeling layers on Level 11, the modular modeling layers
comprising:

patient models comprising a medical library of individual

health events;

diagnostic integration models to integrate diagnostics

model levels;

therapeutic integration models to integrate therapeutics

model levels;

prognostics integration models to integrate prognostics

model levels;

surgical elements integration models to integrate surgical

elements; and

human longevity analyses models.

130. The system of claim 118 further including modular
modeling layers on Level 12, the modular modeling layers
comprising;

patient family and hereditary models;

infectious diseases and epidemiology clusters models;

public health models;

preventive medicine models;

large patient population classification models;

trauma medicine models;

medical devices-patient interactions models; and

hospital architecture, logistics and management models.

131. The system of claim 118 further including modular
modeling layers on Level 13, the modular modeling layers
comprising:

DNA, RNA and protein data aggregation and analysis

models;

cell, organ, tissue and bio-system data models;

pathology diagnostics and prognostics models;

pathology therapeutics, prognostics and clinical testing
models;

aggregate medical models; and

an atlas of human medical models.

132. A method of processing individualized medical mod-
els for diagnosing a patient’s disease, the method operating
on at least one computer comprising hardware logic,
memory components, software components, at least one
database management system, and computer modeling soft-
ware, the method comprising:

executing at least one biology large language model

(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;
executing at least one artificial intelligence (Al), machine
learning (ML) or deep learning (DL) algorithm;
accessing a reference biology database;
accessing molecular biomarker data representing the
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;

analyzing, by the computer modeling software, the

molecular biomarker data and identifying dysfunc-
tional patient genes, RNAs and/or proteins;
comparing, by the at least one Al, ML or DL algorithm,
the molecular biomarker data, including the identified
dysfunctional patient genes, RNAs and/or proteins to
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the reference biology database and identifying a spe-
cific disease in the patient; and

generating or updating, by the computer modeling soft-

ware, an individualized patient medical model for the
patient to include the identified dysfunctional patient
genes, RNAs and/or proteins and the identified specific
disease.

133. The method of claim 132, wherein the patient’s
disease includes cardiovascular diseases, neurodegenerative
diseases, cancer, autoimmune diseases and genetic diseases.

134. The method of claim 132, wherein the Al algorithm
includes GenAl algorithms, including at least one of gen-
erative adversarial networks (GANS), restricted Boltzmann
Machines (RNBs), variational autoencoders (VAEs), natural
language processing (NLP), large language models (LLMs)
or diffusion models or generative pre-trained transformers
(GPT).

135. The method of claim 132, wherein the Al algorithm
includes geometric deep learning (GDL) algorithms, includ-
ing at least one of graph neural networks (GNNs), graph
attention networks (GATs), graph convolutional neural net-
works (GCNs), manifold-valued neural networks (MVNs),
spherical convolutional neural networks (SCNs), graphical
autoencoders (GAEs) or graph of graphs neural networks
(GoGNNgs).

136. The method of claim 132, wherein the Al algorithm
includes 3D geometric deep learning (3D GDL) algorithms,
including at least one of 3D graph neural networks (3D
GNN5s), 3D graph attention networks (3D GATs), 3D graph
convolutional neural networks (3D GCNs), 3D manifold-
valued neural networks (3D MVNSs), 3D spherical convo-
lutional neural networks (3D SCNs), 3D graphical autoen-
coders (3D GAEs) or 3D graph of graphs neural networks
(3D GoGNN ).

137. The method of claim 132, wherein the Al algorithm
includes generative 3D geometric deep learning (Gen 3D
GDL) algorithms, including at least one of generative 3D
graph neural networks (Gen 3D GNNs), generative 3D
graph attention networks (Gen 3D GATs), generative 3D
graph convolutional neural networks (Gen 3D GCNs), gen-
erative 3D manifold-valued neural networks (Gen 3D
MVNs) or generative 3D graph of graphs neural networks
(Gen 3D GoGNNSs).

138. A method of processing individualized medical mod-
els for diagnosing a patient’s disease, the method operating
on at least one computer comprising hardware logic,
memory components, software components, at least one
database management system, and computer modeling soft-
ware, the method comprising:

executing at least one biology large language model

(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;
executing at least one artificial intelligence (AI), machine
learning (ML) or deep learning (DL) algorithm;
storing gene, RNA, protein and other biological data in at
least one reference biology database;
identifying molecular biomarker data representing the
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;

analyzing, by the computer modeling software, the

molecular biomarker data and identifying dysfunc-

tional patient genes, RNAs and/or proteins;
comparing, by the at least one Al, ML or DL algorithms,

the molecular biomarker data, including the identified
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dysfunctional patient genes, RNAs and/or proteins to
the reference biology database and identifying a spe-
cific disease in the patient; and
generating or updating, by the computer modeling soft-
ware, an individualized patient medical model for the
patient to include the identified dysfunctional patient
genes, RNAs and/or proteins and the identified specific
disease.
139. The method of claim 138, further comprising:
accessing the computer remotely in a data center by
software as a service (SaaS).
140. The method of claim 138, further comprising:
conducting in silico experiments on patient biological
data.
141. The method of claim 138, further comprising:
identifying a novel biomarker by analyzing patient bio-
logical data.
142. The method of claim 138, further comprising:
generating 4D simulations of abnormal protein pathways
and abnormal protein interactions.
143. The method of claim 138, further comprising:
comparing, by the Al or ML or DL software algorithms,
the molecular biomarker data, including the identified
dysfunctional patient genes, RNAs and/or proteins to
the reference biology database or biology LLM to
generate a prediction of the progress of the patient’s
disease; and
updating, by the computer modeling software, the indi-
vidualized patient medical model to include the pre-
diction of the progress of the patient’s disease.
144. The method of claim 138, further comprising:
diagnosing, by the AI, ML or DL algorithms, the patient’s
disease;
developing, by the Al, ML or DL algorithms, a therapy for
the patient’s disease; and
updating, by the computer modeling software, the indi-
vidualized patient medical model to include the therapy
for the patient’s disease.
145. The method of claim 138, further comprising:
diagnosing, by the AI, ML or DL algorithms, the patient’s
disease;
identifying, by the Al, ML or DL algorithms, at least one
protein target;
generating, by the Al, ML or DL algorithms, a novel
synthetic protein; and
developing, by the Al, ML or DL algorithms, a unique
therapy to apply to the at least one protein target.
146. A method of processing individualized medical mod-
els for therapeutic prognostics to predict the progress of a
patient’s disease, the method operating on at least one
computer comprising hardware logic, memory components,
software components, at least one database management
system, and computer modeling software, the method com-
prising:
accessing at least one biology large language model
(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;
executing at least one artificial intelligence (Al), machine
learning (ML) or deep learning (DL) algorithm;
storing gene, RNA, protein and/or other biological data in
at least one reference biology database;
receiving molecular biomarker data representing the
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;
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analyzing, by the computer modeling software, the
molecular biomarker data after a therapy has been
applied to the patient’s disease and identifying dys-
functional patient genes, RNAs and/or proteins;

comparing, by the AI, ML, or DL algorithms, the molecu-
lar biomarker data, including the identified dysfunc-
tional patient genes, RNAs and/or proteins to a refer-
ence biology database and identifying a specific disease
in the patient after a therapy has been applied to the
patient’s disease;

identifying, by the AI, ML or DL algorithms, at least one

protein target;

generating an assessment, by the AI, ML or DL algo-

rithms, the progress of the therapy to the patient’s
disease; and

generating or updating, by the computer modeling soft-

ware, an individualized patient medical model for the
patient to include the identified dysfunctional patient
genes, RNAs and/or proteins and the assessment of the
progress of the therapy.

147. A method of processing individualized medical mod-
els for diagnosing a patient’s disease, the method operating
on at least one computer comprising hardware logic,
memory components, program code, software components
at least one database management system, and computer
modeling software, the method comprising:

accessing at least one biology large language model

(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;
executing at least one artificial intelligence (AI), machine
learning (ML) or deep learning (DL) algorithm;
storing gene, RNA, protein and/or other biological data in
at least one reference biology database;
receiving molecular biomarker data representing the
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;

analyzing, by the computer modeling software, the

molecular biomarker data and identifying dysfunc-
tional patient genes, RNAs and/or proteins;
comparing, by at least one geometric deep learning algo-
rithm the molecular biomarker data, including the
identified dysfunctional patient genes, to the reference
biology database diagnose a patient’s disease after a
therapy has been applied to the patient’s disease; and
generating or updating, by the computer modeling soft-
ware, an individualized patient medical model for the
patient to include the identified dysfunctional patient
genes, RNAs and/or proteins and the diagnosis of the
patient’s disease after a therapy has been applied.

148. The method of claim 147, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model, the method further comprising:

generating, by the at least one geometric deep learning

algorithm, a prediction the progress of the patient’s
disease; and

updating, by the computer modeling software the indi-

vidualized diagnostic prognostics model to include the
prediction of the progress of the patient’s disease.

149. The method of claim 147, wherein the at least one
geometric deep learning algorithm is at least one 3D geo-
metric deep learning algorithm.

150. The method of claim 149, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model, the method further comprising:
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generating, by the at least one 3D geometric deep learning
algorithm, a prediction the progress of the patient’s
disease after a therapy has been applied to the patient’s
disease; and

updating, by the computer modeling software, the indi-

vidualized diagnostic prognostics model to include the
prediction of the progress of the patient’s disease.
151. The method of claim 149, further comprising:
developing, by the at least one 3D geometric deep learn-
ing algorithm a solution to a biological pathology;

generating, by the at least one 3D geometric deep learning
algorithm, a prediction of the progress of the patient’s
disease based on the solution; and

updating, by the computer modeling software, the indi-

vidualized patient medical model to include the per-
sonalized therapy for the patient’s disease.

152. The method of claim 149, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model, the method further comprising:

generating, by the at least one geometric deep learning

algorithm, a prediction the progress of the patient’s
disease after a therapy has been applied; and
updating, by the computer modeling software, the indi-
vidualized diagnostic prognostics model to include the
prediction of the progress of the patient’s disease.

153. The method of claim 149, wherein the at least one
geometric deep learning algorithm is at least one generative
3D geometric deep learning algorithm.

154. The method of claim 153, further comprising:

developing, by the at least one generative 3D geometric

deep learning algorithm a solution to a biological
pathology;

generating, by the at least one generative 3D geometric

deep learning algorithm, a personalized therapy for the
patient’s disease based on the solution; and

updating, by the computer modeling software, the indi-

vidualized patient medical model to include the per-
sonalized therapy for the patient’s disease.

155. The method of claim 153, wherein the individualized
patient medical model includes an individualized diagnostic
prognostics model, the method further comprising:

generating, by the at least one generative 3D geometric

deep learning algorithm, a prediction the progress of
the patient’s disease after a therapy has been applied;
and

updating, by the computer modeling software the indi-

vidualized diagnostic prognostics model to include the
prediction of the progress of the patient’s disease.

156. The method of claim 155, further comprising:

applying the therapy to the patient.

157. A method for assessing the progress of a patient’s
disease in a control arm of a drug clinical trial, the method
operating on at least one computer comprising hardware
logic, memory components, software components, at least
one database management system, and computer modeling
software, the method comprising:

accessing at least one biology large language model

(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;

executing at least one geometric deep learning or genera-

tive artificial intelligence algorithm;

storing gene, RNA, protein and/or other biological data in

at least one reference biology database;
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receiving molecular biomarker data representing the
patient’s disease, the molecular biomarker data includ-
ing gene, RNA and/or protein data;
analyzing, by the computer modeling software, the
molecular biomarker data and identifying dysfunc-
tional patient genes, RNAs and/or proteins in the
patient in the control arm of the drug clinical trial;

comparing, by the at least one geometric deep learning or
generative artificial intelligence algorithms, the
molecular biomarker data, including the identified dys-
functional patient genes, RNAs and/or proteins to the
reference biology database and identifying a specific
disease in the patient after a therapy is applied to the
patient’s disease;
generating, by the at least one geometric deep learning or
generative artificial intelligence algorithm, a prediction
of the progress of the patient’s disease; and

generating or updating, by the computer modeling soft-
ware, an individualized patient medical model for the
patient to include the identified dysfunctional patient
genes, RN As and/or proteins and the prediction of the
progress of the patient’s disease without therapeutic
intervention in the control arm of the drug clinical
trials.

158. The method of claim 157, further comprising:

including virtual patients in the control arm;

emulating the virtual patients in the medical modeling

system to represent an aggregation of patients with the
disease;

analyzing the virtual patients to describe the progress of

the disease without therapeutic intervention.

159. The method of claim 157, for predicting the progress
of a disease of an active arm patient’s disease with thera-
peutic intervention in an active arm of the drug clinical trial,
wherein the molecular biomarker data represents the active
arm patient’s disease, the method further comprising:

analyzing, by the computer modeling software the

molecular biomarker data of the active arm patient in
the active arm of the drug clinical trial after application
of at least one therapy and identifying dysfunctional
patient genes, RNAs and/or proteins;

generating by the at least one geometric deep learning or

generative Al algorithm a prediction of the progress of
the active arm patient’s disease, and

generating or updating by the computer modeling soft-

ware, an individualized patient medical model for the
active arm patient to include the identified dysfunc-
tional patient genes, RNAs and/or proteins and the
prediction of the progress of the active arm patient’s
disease with therapeutic intervention in the active arm
of the drug clinical trial.

160. A method of processing individualized medical mod-
els in an integrated health record platform (IHRP) to assist
in the assessment or prediction of the progress of a patient’s
disease, the method operating on at least one computer
comprising logic hardware, memory components, software
components, at least one database management system, and
computer modeling software, the method comprising:

accessing at least one biology large language model

(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;

executing at least one geometric deep learning or genera-

tive Al algorithm;
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receiving, by the at least one computer, biological data
representing a patient’s disease, including molecular
biomarker data including gene, RNA, protein and/or
multiomics data;
accessing, by the at least one computer, a medical mod-
eling system;
analyzing, by the medical modeling system, the molecular
biomarker data of the patient and identifying dysfunc-
tional patient genes, RNAs and/or proteins;
generating, by the at least one geometric deep learning,
machine learning or generative Al algorithm, a predic-
tion of the progress of the patient’s disease;
generating or updating, by the computer modeling soft-
ware, an individualized patient medical model to
include the identified dysfunctional patient genes,
RNAs and/or proteins and the prediction of the prog-
ress of the patient’s disease; and
importing and storing, by the at least one computer, the
individualized patient medical model.
161. The method of claim 160, further comprising:
executing, by the at least one computer, medical security
software.
162. The method of claim 160, further comprising:
surveying, translating analyzing or summarizing, by natu-
ral language software, medical articles or patient charts.
163. A method of operating personal health assistant
(PHA) software for medical modeling to assist a physician
in generating or updating an individualized patient medical
model, the PHA software operating on at least one computer
comprising hardware logic, memory components, software
components at least one database management system, and
computer modeling software, the method comprising:
activating a plurality of PHA intelligent agents operable
on the at least one computer and including Artificial
Intelligence (Al) algorithms;
accessing, by at least one of the plurality of PHA intel-
ligent agents at least one biology large language model
(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;
receiving, by the at least one computer, biological data
representing a patient’s disease, including molecular
biomarker data including gene, RNA, protein and/or
multiomics data;
building or accessing, by the computer modeling soft-
ware, an individualized medical model for the patient;
analyzing, by at least one of the PHA intelligent agents,
the molecular biomarker data of the patient and iden-
tifying dysfunctional patient genes, RNAs and/or pro-
teins;
generating, by at least a second one of the plurality of
PHA intelligent agents, a prediction of the progress of
the patient’s disease;
generating or updating, by the computer modeling soft-
ware, an individualized patient medical model to
include the identified dysfunctional patient genes,
RNAs and/or proteins and the prediction of the prog-
ress of the patient’s disease; and
importing and storing, by the at least one computer, the
individualized patient medical model into a database.
164. A method for operating patient relationship manage-
ment software applied operable on at least one computer
comprising hardware logic, memory components, software
components, at least one database management system, and
computer modeling software, the method comprising:
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accessing at least one biology large language model
(LLM), including at least one gene LLM, RNA LLM,
protein LLM or antibody LLM;

receiving, by the patient relationship management soft-
ware, biological data representing a patient’s disease,
including molecular biomarker data including gene,
RNA, protein and/or multiomics data;

accessing, by the patient relationship management soft-
ware, a medical modeling system;

analyzing, by the medical modeling system, the molecular
biomarker data of the patient and identifying dysfunc-
tional patient genes, RNAs and/or proteins;

generating, by at least one geometric deep learning,
machine learning or generative Al algorithm, a predic-
tion of the progress of the patient’s disease;

generating or updating, by the medical modeling system,
an individualized patient medical model to include the
identified dysfunctional patient genes, RNAs and/or
proteins and the prediction of the progress of the
patient’s disease;

interfacing the patient relationship management software
between a patient or a doctor; and

importing and storing, by the patient relationship man-
agement software, the individualized patient medical
model in a database.

165. The method of claim 164, further comprising:

executing, by the at least one computer, security software
in connection with the patient relationship management
software.



